
Jaybird JDBC Driver Java
Programmer’s Manual

Roman Rokytskyy, Mark Rotteveel

Table of Contents
1. Introduction. 1

1.1. This manual . 1

1.2. History . 1

1.3. Jaybird Architecture. 1

1.4. Jaybird Distribution . 2

1.5. Quality Assurance. 3

1.6. Useful resources . 3

1.7. Contributing . 4

User Manual. 5

2. Obtaining a connection . 7

2.1. Obtaining connection java.sql.DriverManager. 7

2.2. Driver types . 13

2.3. Connection Pooling . 18

2.4. The javax.sql.DataSource implementation . 20

2.5. The javax.sql.ConnectionPoolDataSource implementation. 21

2.6. The javax.sql.XADataSource implementation. 21

3. Handling exceptions . 23

3.1. Working with exceptions . 23

3.2. Warnings . 25

3.3. java.sql.SQLException in Jaybird . 26

3.4. SQL states . 28

3.5. Useful Firebird error codes . 28

4. Executing statements . 33

4.1. The java.sql.Statement interface . 33

4.2. Statement behind the scenes. 36

4.3. The java.sql.PreparedStatement interface. 38

4.4. The java.sql.CallableStatement interface . 40

4.5. Batch Updates . 46

4.6. Escape Syntax . 49

5. Working with result sets . 53

5.1. ResultSet properties. 53

5.2. ResultSet manipulation. 54

6. Using transactions . 59

6.1. JDBC transactions. 59

6.2. Auto-commit mode . 60

6.3. Read-only Transactions . 62

6.4. Transaction Isolation Levels . 62

6.5. Savepoints . 64

6.6. Transaction Parameter Buffer . 65

6.7. Table Reservation. 68

7. Working with Services . 71

7.1. ServiceManager . 71

7.2. Backup and restore . 73

7.3. User management . 82

7.4. Database maintenance . 83

7.5. Table statistics of a connection (experimental) . 88

7.6. Database statistics . 88

8. Working with Events. 91

8.1. Database events . 91

8.2. Posting events . 92

8.3. Subscribing to events . 92

Reference Manual . 95

9. Connection reference . 97

9.1. Authentication plugins . 97

9.2. Wire encryption support . 99

9.3. Wire compression . 100

9.4. Database encryption support . 101

9.5. Default holdable result sets . 102

9.6. Firebird auto commit mode (experimental) . 103

9.7. Process information . 103

9.8. Data type bind support . 105

9.9. Enabling unsupported protocol versions. 105

9.10. Opt-in feature for package information in DatabaseMetaData . 107

9.11. Client info properties . 108

10. Statement reference . 111

10.1. Generated keys retrieval . 111

10.2. Connection property ignoreProcedureType . 118

10.3. Connection property scrollableCursor . 118

10.4. Connection property useServerBatch. 119

10.5. Connection property serverBatchBufferSize . 119

11. General. 121

11.1. Logging. 121

12. Datatype reference . 125

12.1. Binary types BINARY/VARBINARY . 125

12.2. Type BOOLEAN. 125

12.3. Date/time types. 127

12.4. Decimal floating point type DECFLOAT . 133

12.5. Exact numeric types DECIMAL/NUMERIC . 139

12.6. Type INT128 . 139

Appendices. 141

Appendix A: Extended connection properties . 143

A.1. Authentication and security properties. 143

A.2. Other properties . 144

A.3. Transaction isolation levels . 148

Appendix B: System properties . 151

B.1. Logging. 151

B.2. Process information . 151

B.3. Character set defaults . 151

B.4. Wire protocol buffer sizes . 152

B.5. Other properties . 153

B.6. Useful Java system properties . 153

Appendix C: Data Type Conversion Table . 155

C.1. Mapping between JDBC, Firebird and Java Types . 155

C.2. Data Type Conversions. 155

Appendix D: Character Encodings . 157

D.1. Encodings Types . 157

D.2. Encodings in Java . 157

D.3. Available Encodings . 160

Appendix E: Supported JDBC Scalar Functions . 163

E.1. Numeric Functions . 163

E.2. String Functions. 164

E.3. Time and Date Functions . 166

E.4. System Functions . 167

E.5. Conversion Functions. 167

Appendix F: Jaybird versions . 171

F.1. Jaybird 5 . 171

F.2. Jaybird 4 . 173

F.3. Jaybird 3 . 176

F.4. Jaybird 2.2 . 179

F.5. Pre-release versions . 181

Appendix G: License . 185

Chapter 1. Introduction
Jaybird is a JDBC driver to connect to the Firebird database server.

Jaybird is a driver that provides both Type 4 (pure Java) and Type 2 (native binding) support. The
type 2 driver includes support for Firebird Embedded.

JCA — Java Connector Architecture

Jaybird 4 and earlier are based on both the well-known JDBC standard and the JCA — Java
Connector Architecture — standard for application server connections to enterprise
information systems. The JCA standard specifies an architecture in which an application
server can cooperate with a driver so that the application server manages transactions,
security, and resource pooling, and the driver supplies only the connection functionality.

The JCA implementation was removed in Jaybird 5, and Jaybird is now only a JDBC driver.

1.1. This manual
This manual covers Jaybird 5 and may use Java 11 and Firebird 4.0 specific features, but most
examples and information also apply to previous versions of Jaybird, Firebird and Java. Features
that were removed in Jaybird 3 or earlier are not covered.

New or removed features are tagged with the version that introduced a feature (e.g. Since: Jaybird
5) or removed feature (e.g. Removed in: Jaybird 5). This tagging is only done for features
introduced (or removed) after Jaybird 4.0.0, or in Firebird 3.0 or later.

This manual may include documentation of features of — possibly unreleased — Jaybird versions
later than 5 to simplify manual maintenance and versioning.

1.2. History
When Borland released an open-source version of the InterBase RDBMS, it included sources for a
type 3 JDBC driver called InterClient.[1] However, due to some inherent limitations of the InterBase
(and later Firebird) client library, it was decided that the type 3 driver was a dead end. Instead, the
Firebird team decided to develop a pure Java implementation of the wire protocol. This
implementation became the basis for Jaybird, a pure Java driver for Firebird relational database.

1.3. Jaybird Architecture
The Jaybird driver consists of three layers, each of which is responsible for its part of the
functionality.

• The GDS layer represents a Java translation of the Firebird API. It is represented by a number of
interfaces and classes from the org.firebirdsql.gds package (and sub-packages).

Chapter 1. Introduction

1

This API is implemented by a number of plugins that provide the pure java, native, local, and
embedded implementations of the driver.

• Removed in: Jaybird 5 The JCA layer represents the heart of the driver. Here all connection and
transaction management happens. Additionally, this layer adapts the GDS API and proxies the
calls to the GDS implementation.

The JCA layer is an implementation of the Java Connector Architecture specification.

• Since: Jaybird 5 The XCA layer is a replacement of the JCA layer of previous versions.

• The JDBC layer is an implementation of the JDBC specification.

In addition, the Services API allows you to manage the database and the server itself. The Manager
component represents a JMX compatible implementation that utilizes the Services API. Currently
only calls to create and drop database are available in the Manager component, other class provide
features for database backup/restore, user management, statistics gathering, etc.

1.4. Jaybird Distribution
Jaybird 5 supports Firebird 2.5 and higher. See Jaybird versions for detailed information on
supported Java and Firebird versions per Jaybird version.

The latest version of Jaybird can be downloaded from https://firebirdsql.org/en/jdbc-driver/

1.4.1. Maven

Alternatively, you can use maven to automatically download Jaybird and its dependencies.

Jaybird 5 is available from Maven central:

Groupid: org.firebirdsql.jdbc,
Artifactid: jaybird,
Version: 5.0.4.<java> (where <java> is java11 or java8)

For example:

<dependency>
 <groupId>org.firebirdsql.jdbc</groupId>
 <artifactId>jaybird</artifactId>
 <version>5.0.4.java11</version>
</dependency>

If you want to use Type 2 support (native or embedded), you need to explicitly include JNA 5.12.1 as
a dependency:

<dependency>
 <groupId>net.java.dev.jna</groupId>
 <artifactId>jna</artifactId>

Chapter 1. Introduction

2

https://firebirdsql.org/en/jdbc-driver/

 <version>5.12.1</version>
</dependency>

In Jaybird 6, native and embedded support will be in a separate library.

The Firebird client library is available as a Maven dependencies, see Maven dependency for native
client. In the future, a Maven dependency for Firebird embedded may become available as well.

1.5. Quality Assurance
The Jaybird team uses JUnit test cases to assure the quality of the released driver. During
development unit tests are extensively used. Committing a code change to the source control is not
allowed until it passes all existing unit tests. Each reproducible bug usually gets its own test case.
This guarantees that a clean check out can be compiled and will not contain any previously
discovered and fixed bugs. Currently there are more than 9000 test cases covering most of the
driver code.

1.6. Useful resources

1.6.1. JDBC

For JDBC documentation, see https://www.oracle.com/java/technologies/javase/javase-tech-
database.html.

1.6.2. Firebird

General information about the Firebird database is available from the Firebird website
(https://www.firebirdsql.org/).

For information about using SQL in Firebird, see the Firebird 4.0 Language Reference
[https://www.firebirdsql.org/file/documentation/html/en/refdocs/fblangref40/firebird-40-language-reference.html]
and other documents available from the Reference Manuals [https://www.firebirdsql.org/en/reference-

manuals/] section of the Firebird website.

1.6.3. Jaybird Support

Support for Jaybird is available through the following channels:

• The firebird-java Google Group [https://groups.google.com/g/firebird-java] and corresponding mailing
list firebird-java@googlegroups.com

You can subscribe to the mailing list by sending an email to firebird-
java+subscribe@googlegroups.com (this does not require a Google account). Alternatively, you
can join the group at firebird-java Google Group [https://groups.google.com/g/firebird-java] (this
requires a Google account).

• On Jaybird Frequently Asked Questions [https://www.firebirdsql.org/file/documentation/

drivers_documentation/java/faq.html].

Chapter 1. Introduction

3

https://www.oracle.com/java/technologies/javase/javase-tech-database.html
https://www.oracle.com/java/technologies/javase/javase-tech-database.html
https://www.firebirdsql.org/
https://www.firebirdsql.org/file/documentation/html/en/refdocs/fblangref40/firebird-40-language-reference.html
https://www.firebirdsql.org/en/reference-manuals/
https://groups.google.com/g/firebird-java
mailto:firebird-java@googlegroups.com
mailto:firebird-java+subscribe@googlegroups.com
mailto:firebird-java+subscribe@googlegroups.com
https://groups.google.com/g/firebird-java
https://www.firebirdsql.org/file/documentation/drivers_documentation/java/faq.html

• On Jaybird wiki [https://github.com/FirebirdSQL/jaybird/wiki/].

• On Stack Overflow [https://stackoverflow.com/], please tag your questions with jaybird and firebird

Please make sure to familiarize yourself with the rules and expectations of Stack Overflow
before asking, see Stack Overflow Tour [https://stackoverflow.com/tour] and Help Center: Asking
[https://stackoverflow.com/help/asking]

1.7. Contributing
There are several ways you can contribute to Jaybird or Firebird in general:

• Participate on the mailing lists (see https://www.firebirdsql.org/en/mailing-lists/)

• Report bugs or submit patches on the tracker (see Reporting Bugs)

• Create pull requests on GitHub (https://github.com/FirebirdSQL/jaybird)

• Become a developer (for Jaybird contact us on firebird-java [https://groups.google.com/g/firebird-java],
for Firebird in general, use the firebird-devel Google Group [https://groups.google.com/g/firebird-

devel])

• Become a paying member or sponsor of the Firebird Foundation (see
https://www.firebirdsql.org/en/firebird-foundation/)

1.7.1. Reporting Bugs

The developers follow the firebird-java Google Group [https://groups.google.com/g/firebird-java] and
mailing list. Join the list and post information about suspected bugs. List members may be able to
help out to determine if it is an actual bug, provide a workaround and get you going again, whereas
bug fixes might take a while.

You can report bugs in the Jaybird bug tracker [https://github.com/FirebirdSQL/jaybird/issues] on GitHub.

When reporting bugs, please provide a minimal, but complete reproduction, including databases
and source code to reproduce the problem. Patches to fix bugs are also appreciated. Make sure the
patch is against a recent master version of the code. You can also fork the jaybird repository and
create pull requests.

[1] For those interested in software archaeology, you can find the open sourced Interclient sources archived on https://github.com/
FirebirdSQL/x-cvs-interclient

Chapter 1. Introduction

4

https://github.com/FirebirdSQL/jaybird/wiki/
https://stackoverflow.com/
https://stackoverflow.com/tour
https://stackoverflow.com/help/asking
https://www.firebirdsql.org/en/mailing-lists/
https://github.com/FirebirdSQL/jaybird
https://groups.google.com/g/firebird-java
https://groups.google.com/g/firebird-devel
https://www.firebirdsql.org/en/firebird-foundation/
https://groups.google.com/g/firebird-java
https://github.com/FirebirdSQL/jaybird/issues
https://github.com/FirebirdSQL/x-cvs-interclient
https://github.com/FirebirdSQL/x-cvs-interclient

User Manual

5

6

Chapter 2. Obtaining a connection
Jaybird is a regular JDBC driver and supports two primary ways to obtain connection: via
java.sql.DriverManager and via an implementation of the javax.sql.DataSource interface.

2.1. Obtaining connection java.sql.DriverManager
java.sql.DriverManager was the first connection factory in Java. It is based on the concept of the
JDBC URL, a string that uniquely identifies the database to connect. The driver manager then checks
which driver(s) — if any — can establish a connection.

There is also support to specify additional connection parameters, like username and password.

A JDBC URL consists of three parts:

jdbc:firebird://localhost:3050/c:/database/example.fdb

• jdbc
JDBC protocol

• firebird or firebirdsql
JDBC subprotocol, identifies driver to use, in this case Jaybird

• //localhost:3050/c:/database/example.fdb

This is a database specific part, and identifies the database for the driver to connect, in the case
of Jaybird that is //<host>:<port>/<path to database>

The first part, jdbc:firebird: or jdbc:firebirdsql:, is required by JDBC and specifies the so-called
protocol and subprotocol for the JDBC connection. In other words, the type of connection that the
application wants to obtain, in this example it is a connection to a Firebird database.

An example of obtaining a connection is shown below.

Simple example to obtain a JDBC connection

package hello;

import java.sql.*;

public class HelloServer {

 public static void main(String[] args) throws Exception {

 Class.forName("org.firebirdsql.jdbc.FBDriver"); ①

 Connection connection = DriverManager.getConnection(
 "jdbc:firebird://localhost:3050/c:/db/employee.fdb",
 "SYSDBA", "masterkey"); ②

Chapter 2. Obtaining a connection

7

 // do something here
 }
}

The first line of this code is important — it tells Java to load the Jaybird JDBC driver. As required by
the JDBC specification, at this point driver registers itself with java.sql.DriverManager.

Since Java 6 (JDBC 4), explicitly loading the driver using
Class.forName("org.firebirdsql.jdbc.FBDriver") is no longer necessary, except when the driver is
not on the system class path. Examples where it may be necessary to explicitly load the driver are
web applications that include the driver in the deployment. There, the driver is not on the system
class path, so it will need to be loaded explicitly.

We will leave out usages of Class.forName in further examples, they will work because of automatic
driver loading.



Registering the JDBC driver

There are several ways to register JDBC driver:

1. DriverManager loads the drivers from the system class path. This happens
automatically.

2. The application explicitly loads the driver’s class. This is only necessary if the
automatic loading (see previous item) is not available. This can be necessary
because the driver jar is loaded dynamically, through a different classloader,
etc).

The JDBC specification requires that during class initialization the driver
registers itself with DriverManager.

Class.forName("org.firebirdsql.jdbc.FBDriver");

3. The JDBC driver name is listed in the jdbc.drivers system property. Multiple
drivers can be separated using a colon (:).

You can specify the value of this property during JVM startup:

java\
 -Djdbc.drivers=foo.Driver:org.firebirdsql.jdbc.FBDriver\
 -classpath jaybird-full-{jaybird-example-
version}.jar;C:/myproject/classes\
 my.company.SomeJavaExample

The second statement of the example tells the java.sql.DriverManager to open a database
connection to the Firebird server running on localhost, and the path to the database is
c:/database/employee.fdb.

Chapter 2. Obtaining a connection

8

The connection specification consists of the host name of the database server, optionally you can
specify a port (by default port 3050 is used). The host name can be specified using either its DNS
name (for example fb-server.mycompany.com or just fb-server), or its IP address (for example
192.168.0.5, or [1080::8:800:200C:417A] for an IPv6 address).

After the server name and port, the alias or path to the database is specified. We suggest to specify a
database alias instead of the absolute database path. For more information about using aliases, see
the documentation of Firebird server.

The format of the path depends on the platform of the Firebird server.

On Windows, the path must include the drive letter and path, for example
c:/database/employee.fdb, which points to the employee database that can be found in the database
directory of drive C:. Java (and Firebird) supports either / or \ (escaped as \\) as path separator on
the Windows platform. On Unix and Linux platform, you can use only / as the path separator.

On Unix platforms the path must include the root, as the path is otherwise interpreted relative to a
server-dependent folder. Having to include the root has the effect that a database in
/var/firebird/employee.fdb needs to use a double // after the host name (and port) in the
connection string: jdbc:firebird://localhost//var/firebird/employee.fdb.

It is possible to specify a relative path, but as this depends on the server configuration, this may be
confusing or easily lead to errors. We suggest not to use relative paths, and instead use an alias.

2.1.1. Specifying extended properties

What if we want to specify additional connection parameters, for example a client encoding? The
JDBC API provides a method to specify additional connection properties:

Obtaining JDBC connection with additional connection properties

package hello;

import java.sql.*;
import java.util.*;

public class HelloServerWithEncoding {

 public static void main(String[] args) throws Exception {
 Properties props = new Properties();

 props.setProperty("user", "SYSDBA");
 props.setProperty("password", "masterkey");
 props.setProperty("encoding", "UTF8");

 try (Connection connection = DriverManager.getConnection(
 "jdbc:firebird://localhost:3050/C:/db/employee.fdb",
 props)) {

 // do something here

Chapter 2. Obtaining a connection

9

 }
 }
}

The user and password properties are defined in JDBC. All other property names, like encoding here,
are driver-specific.

Additional properties, for example the SQL role for the connection can be added to the props object.
The list of properties available in Jaybird can be found in Extended connection properties.

It is not always possible to use the above described method. Jaybird also provides a possibility to
specify extended properties in the JDBC URL.

Extended JDBC URL format

jdbc:firebird://host[:port]/<path to db>?<properties>
<properties> ::= <property>[{& | ;}<properties>]
<property> ::= <name>[=<value>]

The example below shows the specification for extended JDBC properties in the URL.

In this case extended properties are passed together with the URL using the HTTP-like parameter
passing scheme: first comes the main part of the URL, then "?", then name-value pairs separated
with & or ;. This example is equivalent to the previous example.

 Jaybird only supports URL encoding in Jaybird 4 and higher.

Specifying extended properties in the JDBC URL

import java.sql.*;

...

Connection connection = DriverManager.getConnection(
 "jdbc:firebird://localhost:3050/C:/db/employee.fdb?encoding=UTF8",
 "SYSDBA",
 "masterkey");

URL encoding in query part of JDBC URL

UTF-8 URL encoded values (and keys) can be used in the query part of the JDBC URL.

As a result of this change, the following previously unsupported characters can be used in a
connection property value when escaped:

• ; escaped as %3B

• & escaped as %26

In addition, the following characters must also be escaped:

Chapter 2. Obtaining a connection

10

• + in the query part now means space (0x20), so occurrences of + (plus) need to be escaped as %2B;
make sure to do this for base64 encoded values of dbCryptConfig (or use the base64url encoding
instead)

• % in the query part now introduces an escape, so occurrences of % (percent) need to be escaped
as %25

URL encoding can also be used to encode any unicode character in the query string. Jaybird will
always use UTF-8 for decoding.

Invalid URL encoded values will throw a SQLNonTransientConnectionException.

The support for URL encoding only applies to the JDBC URL part after the first ?. URL encoding
should not be applied for connection properties set through java.util.Properties or on a
javax.sql.DataSource.

2.1.2. Obtaining a connection via javax.sql.DataSource

The interface javax.sql.DataSource defines a simple API for a factory of java.sql.Connection objects.
Data sources can be created and configured using code or bean introspection, looked up from JNDI,
or injected by CDI or Spring.

Jaybird itself provides one javax.sql.DataSource implementation,
org.firebirdsql.ds.FBSimpleDataSource, which is a plain factory of connections, without connection
pooling.

A simple example of creating a data source and obtaining a connection via a DataSource object is
shown below.

Obtaining a JDBC connection from a DataSource

package hello;

import java.sql.*;
import org.firebirdsql.ds.*;

public class HelloServerDataSource {

 public static void main(String[] args) throws Exception {
 var ds = new FBSimpleDataSource();
 ds.setUser("SYSDBA");
 ds.setPassword("masterkey");
 // in a single property
 ds.setDatabaseName("//localhost:3050/C:/database/employee.fdb");
 // or split out over serverName, portNumber and databaseName
 ds.setServerName("localhost");
 ds.setPortNumber(3050);
 ds.setDatabaseName("C:/database/employee.fdb");

 try (Connection connection = ds.getConnection()) {
 // do something here...

Chapter 2. Obtaining a connection

11

 }
 }
}

Using JNDI to look up a javax.sql.DataSource

The JDBC 2.0 specification introduced a mechanism to obtain database connections without
requiring the application to know any specifics of the underlying JDBC driver. The application is
only required to know the logical name to find an instance of the javax.sql.DataSource interface
using Java Naming and Directory Interface (JNDI). This was a common way to obtain connections in
web and application servers before the introduction of CDI.

This code assumes that you have correctly configured the JNDI properties. For more information
about configuring JNDI please refer to the documentation provided with your web or application
server.

Typical way to obtain JDBC connection via JNDI

package hello;

import java.sql.*;
import javax.sql.*;
import javax.naming.*;

public class HelloServerJNDI {

 public static void main(String[] args) throws Exception {
 var ctx = new InitialContext();
 DataSource ds = (DataSource) ctx.lookup("jdbc/SomeDB");

 try (Connection connection = ds.getConnection()) {
 // do something here...
 }
 }
}

Usually, the binding between the DataSource object and its JNDI name happens in the configuration
of your web or application server. However, under some circumstances (e.g. you are developing
your own JNDI-enabled application server/framework), you may have to do this yourself. You can
use this code snippet for this purpose:

Programmatic way to instantiate javax.sql.DataSource implementation

import javax.naming.*;
import org.firebirdsql.ds.*;
...
var ds = new FBSimpleDataSource();

ds.setDatabaseName("//localhost:3050/C:/database/employee.fdb");

Chapter 2. Obtaining a connection

12

ds.setUser("SYSDBA");
ds.setPassword("masterkey");

var ctx = new InitialContext();

ctx.bind("jdbc/SomeDB", ds);

The DataSource implementation supports all connection properties available to the DriverManager
interface.


Manually binding to JNDI like shown above is uncommon. If you find yourself
copying this code, rethink what you’re doing.

2.2. Driver types
As mentioned in the section Jaybird Architecture, Jaybird supports multiple implementations of the
GDS API. The default Jaybird distribution contains two main categories of the implementations: the
pure Java implementation of the Firebird wire protocol, and a JNA proxy that can use a Firebird
fbclient library.

The next sections provide a description of these types and their configuration with the
corresponding JDBC URLs that should be used to obtain the connection of desired type. The type of
the JDBC driver for the javax.sql.DataSource is configured via a corresponding property.

2.2.1. PURE_JAVA type

The PURE_JAVA type (JDBC Type 4) uses a pure Java implementation of the Firebird wire protocol.
This type is recommended for connecting to a remote database server using TCP/IP sockets. No
installation is required except adding the JDBC driver to the class path. This type of driver provides
the best performance when connecting to a remote server.

To obtain a connection using the PURE_JAVA driver type you have to use a JDBC URL as shown in
Obtaining connection java.sql.DriverManager.

The following JDBC URL syntax is supported (serverName became optional in Jaybird 5)

<pure-java-url> ::=
 jdbc:firebird[sql]:[java:]<database-coordinates>

<database-coordinates> ::=
 //[serverName[:portNumber]]/databaseName
 | <legacy-url>

<legacy-url> ::=
 [serverName[/portNumber]:]databaseName

If serverName is not specified, it defaults to localhost.

Chapter 2. Obtaining a connection

13

If portNumber is not specified, it defaults to 3050.

In theory, even <database-coordinates> and databaseName are optional, but this requires specifying
the database name using connection property databaseName, which is possible, but not
recommended.

When using javax.sql.DataSource implementation, you can specify either "PURE_JAVA" or "TYPE4"
driver type, however this type is used by default.

Some URL examples

Pure Java URL examples

// Connect to db alias employee on localhost, port 3050
jdbc:firebird://localhost/employee
jdbc:firebird://localhost:3050/employee
jdbc:firebird:///employee

// Same using the legacy URL format
jdbc:firebird:localhost:employee
jdbc:firebird:localhost/3050:employee
jdbc:firebird:employee



The legacy URL format is the historic URL format used by Firebird itself. We
recommend not using this format, as it can be ambiguous.

For example, say you have a server called java, then jdbc:firebird:java:employee
will attempt to open the employee db alias on localhost, not on java. With
jdbc:firebird://java/employee, this ambiguity does not exist.

2.2.2. NATIVE and LOCAL types

Since: Jaybird 6 Native connections require the jaybird-native artifact on the classpath.

The NATIVE and LOCAL types (JDBC Type 2) use a JNA proxy to access the Firebird client library and
requires installation of the Firebird client. The NATIVE driver type is used to access the remote
database server, the LOCAL type (Windows only) accesses the database server running on the same
host by means of IPC (Inter-Process Communication). Performance of NATIVE driver is
approximately 10% lower compared to the PURE_JAVA driver, but LOCAL type has up to 30% higher
performance compared to the PURE_JAVA driver when connecting the server on the same host. This
is mostly due to the fact that TCP/IP stack is not involved in this mode.

To create a connection using the NATIVE JDBC driver to connect to a remote server you have to use
the following JDBC URL with the native subprotocol.

The following JDBC URL syntax is supported:

<native-url> ::=
 jdbc:firebird[sql]:native:<database-coordinates>

Chapter 2. Obtaining a connection

14

<database-coordinates> ::=
 //[serverName[:portNumber]]/databaseName
 | <fbclient-url>

<fbclient-url>
 inet://serverName[:portNumber]/databaseName
 | inet4://serverName[:portNumber]/databaseName
 | inet6://serverName[:portNumber]/databaseName
 | wnet://[serverName[:portNumber]/]databaseName
 | xnet://databaseName
 | [serverName[/portNumber]:]databaseName

Since: Jaybird 5 Since Jaybird 5, all URLs supported by fbclient can be used. The supported URLs
depend on the fbclient version and the OS (e.g. XNET and WNET are Windows only, and WNET
support will be removed in Firebird 5).

When connecting to a local database server using the LOCAL driver, you should use following:

jdbc:firebird:local:<absolute path to database>

In addition to Jaybird, this requires a native Firebird client library, and JNA 5.12.1 needs to be on
the classpath.



LOCAL protocol removed in Jaybird 5

Since: Jaybird 5 The LOCAL protocol was removed in Jaybird 5, and is now simply
an alias for NATIVE. To ensure local access, use a connection string using XNET
(Windows only!):

jdbc:firebird:native:xnet://<path to database>

This requires a Firebird 3.0 or later fbclient.dll.

Support for this type of URL was introduced in Jaybird 5, so this syntax cannot be
used in earlier versions.

As XNET is Windows only, on other platforms, consider using an EMBEDDED
connection instead.

Native URL examples

// Connect to db alias employee on localhost, port 3050
jdbc:firebird:native://localhost/employee
jdbc:firebird:native://localhost:3050/employee
jdbc:firebird:native:///employee

jdbc:firebird:native:inet://localhost/employee

Chapter 2. Obtaining a connection

15

// Require IPv4
jdbc:firebird:native:inet4://localhost/employee
// Require IPv6
jdbc:firebird:native:inet6://localhost/employee
// Using WNET
jdbc:firebird:native:wnet://localhost/employee
// Using XNET
jdbc:firebird:native:xnet://employee

// Same using the legacy URL format
jdbc:firebird:native:localhost:employee
jdbc:firebird:native:localhost/3050:employee
// May use XNET, INET or embedded access
jdbc:firebird:native:employee

Maven dependency for native client

When using Jaybird 3 and later, you can use a library to provide the Firebird client library for the
native and local protocol. For Windows and Linux, you can add the org.firebirdsql.jdbc:fbclient
dependency on your classpath. This dependency does not support the embedded protocol.

<dependency>
 <groupId>org.firebirdsql.jdbc</groupId>
 <artifactId>fbclient</artifactId>
 <version>4.0.4.0</artifactId>
</dependency>

You can also download the library (see mrotteveel/jaybird-fbclient [https://github.com/mrotteveel/jaybird-

fbclient#download] for download link) and add it your classpath.

See next sections for other solutions.

Windows

For Jaybird 3 and later, we recommend using the solution documented in Maven dependency for
native client.

On Windows, you need to make sure that fbclient.dll is located on the PATH environment variable.
Alternatively you can specify the directory containing this DLL in the jna.library.path system
property.

For example, if you put a copy of fbclient.dll in the current directory you have to use the
following command to start Java:

java -cp <relevant claspath> -Djna.library.path=. com.mycompany.MyClass

If your Java installation is 32-bit, you need a 32-bit fbclient.dll, for 64-bit Java, a 64-bit
fbclient.dll.

Chapter 2. Obtaining a connection

16

https://github.com/mrotteveel/jaybird-fbclient#download

Linux

For Jaybird 3 and later, we recommend using the solution documented in Maven dependency for
native client.

On Linux, you need to make sure that libfbclient.so is available through the LD_PATH environment
variable.

Usually shared libraries are stored in the /usr/lib/ directory; however you will need root
permissions to install the library there. Some distributions will only have, for example,
libfbclient.so.2.5. In that case you may need to add a symlink from libfbclient.so to the client on
your system.

Alternatively, you can specify the directory containing the library in the jna.library.path Java
system property. See the Windows example above for more details.

Limitations

Older versions of the Firebird client library — as far as we are aware, Firebird 2.1 or older — may
not be thread-safe when connecting to a local database server using IPC. By default, Jaybird does
not provide synchronization, but it can be enabled with the system property
org.firebirdsql.jna.syncWrapNativeLibrary set to true. However, this synchronization is local to the
classloader that has loaded the Jaybird classes.

To guarantee correct synchronization, the Jaybird driver must be loaded by the top-most
classloader. For example, when using the Type 2 JDBC driver with a web or application server, you
have to add the Jaybird classes to the main classpath (for example, to the lib/ directory of your web
or application server), but not to the web or Java EE/Jakarta EE application, e.g. the WEB-INF/lib
directory.

2.2.3. EMBEDDED type

Since: Jaybird 6 Embedded connections require the jaybird-native artifact on the classpath.

The Embedded server JDBC driver is a Type 2 JDBC driver that, rather than using the Firebird client
library, loads the Firebird embedded server library instead. This is the highest performance type of
JDBC driver for accessing local databases, as the Java code accesses the database file directly.

The following JDBC URL syntax is supported:

<embedded-url> ::=
 jdbc:firebird[sql]:embedded:_dbname-or-alias_

In practice, the URL accepts the same <fbclient-url> values as described for NATIVE. That is, the
embedded server acts as client library (i.e. you get the same Type 2 behavior as you would get with
using "native").

This driver tries to load fbembed.dll/libfbembed.so (the name used in Firebird 2.5 and earlier) and
fbclient.dll/libfbclient.so.

Chapter 2. Obtaining a connection

17

See also the NATIVE and LOCAL types section.

When using Firebird 3.0 and higher embedded, you will need to make sure the necessary plugins
like engineNN.dll/libengineNN.so (NN is 12 for Firebird 3.0, 13 for Firebird 4.0 and Firebird 5.0) are
accessible to the client library, consult the Firebird 3.0 documentation for more information. For an
example, see the article Jaybird with Firebird embedded example [https://www.lawinegevaar.nl/firebird/

jaybird_embedded_example.html].

Limitations

Older versions of the Firebird embedded server for Linux are not thread safe; as far as we know
this concerns Firebird 2.1 or older. Jaybird can provide the needed synchronization in Java code, as
described for NATIVE type. This implies the same restrictions on the classloader that will load the
Jaybird classes.

By default, the Firebird embedded library opens databases in exclusive mode. This means that this
particular database is accessible only to one Java virtual machine. This can be changed by the
ServerMode setting in firebird.conf.

2.2.4. OOREMOTE type

The OOREMOTE type is a JDBC Type 4 specifically for use with OpenOffice.org and LibreOffice. It
addresses some differences in interpretation of the JDBC specification, and provides alternative
metadata in certain cases to allow OpenOffice.org and LibreOffice to function correctly.


This only describes connecting to Firebird using Jaybird from OpenOffice.org or
LibreOffice, it is not about the Firebird embedded use that has been introduced in
recent LibreOffice versions.

To obtain a connection you have to use following URL:

jdbc:firebirdsql:oo://host[:port]/<path to database>
jdbc:firebird:oo://host[:port]/<path to database>

All other notes for PURE_JAVA type apply.



OOREMOTE deprecated in Jaybird 5, to be removed in Jaybird 6

Since: Jaybird 5 The OOREMOTE protocol implementation is deprecated and will
be removed in Jaybird 6. To connect to Firebird, use LibreOffice Base with
connection option “Firebird External”.

2.3. Connection Pooling
Each time a connection is opened via DriverManager, a new physical connection to server is opened.
It is closed when the connection is closed. To avoid the overhead of creating connections, you can
use a connection pool implementation to maintain a cache of open physical connections that can be
reused between user sessions.

Chapter 2. Obtaining a connection

18

https://www.lawinegevaar.nl/firebird/jaybird_embedded_example.html

Since Jaybird 3, Jaybird no longer provides a connection pool. If you need a javax.sql.DataSource
implementation that provides a connection pool, either use the connection pool support of your
application server, or consider using HikariCP [https://brettwooldridge.github.io/HikariCP/], DBCP
[https://commons.apache.org/proper/commons-dbcp/], or c3p0 [https://www.mchange.com/projects/c3p0/].

2.3.1. HikariCP example

This example shows how to configure HikariCP [https://brettwooldridge.github.io/HikariCP/] to connect to
Firebird.

package example;

import com.zaxxer.hikari.HikariConfig;
import com.zaxxer.hikari.HikariDataSource;
import org.firebirdsql.ds.FBSimpleDataSource;

import java.sql.Connection;
import java.sql.SQLException;

public class HikariConnectExample {

 public static void main(String[] args) {
 HikariDataSource hikariDataSource = initDataSource();

 try (Connection connection = hikariDataSource.getConnection()) {
 // use connection
 } catch (SQLException e) {
 System.getLogger("HikariConnectExample")
 .log(System.Logger.Level.ERROR, "Could not connect", e);
 }

 hikariDataSource.close();
 }

 private static HikariDataSource initDataSource() {
 var firebirdDataSource = new FBSimpleDataSource();
 firebirdDataSource.setServerName("localhost");
 firebirdDataSource.setDatabaseName("employee");
 firebirdDataSource.setUser("sysdba");
 firebirdDataSource.setPassword("masterkey");
 firebirdDataSource.setCharSet("utf-8");

 var config = new HikariConfig();
 config.setDataSource(firebirdDataSource);
 return new HikariDataSource(config);
 }
}

HikariCP provides multiple ways to configure the connection. Some examples:

Chapter 2. Obtaining a connection

19

https://brettwooldridge.github.io/HikariCP/
https://commons.apache.org/proper/commons-dbcp/
https://www.mchange.com/projects/c3p0/
https://brettwooldridge.github.io/HikariCP/

Indirect use of FBSimpleDataSource

private static HikariDataSource initDataSourceAlternative1() {
 var config = new HikariConfig();
 config.setDataSourceClassName("org.firebirdsql.ds.FBSimpleDataSource");
 config.setUsername("sysdba");
 config.setPassword("masterkey");
 config.addDataSourceProperty("serverName", "localhost");
 config.addDataSourceProperty("databaseName", "employee");
 config.addDataSourceProperty("charSet", "utf-8");
 return new HikariDataSource(config);
}

Using the Jaybird JDBC driver instead of a data source

private static HikariDataSource initDataSourceAlternative2() {
 var config = new HikariConfig();
 config.setDriverClassName("org.firebirdsql.jdbc.FBDriver");
 config.setJdbcUrl("jdbc:firebird://localhost/employee");
 config.setUsername("sysdba");
 config.setPassword("masterkey");
 config.addDataSourceProperty("charSet", "utf-8");
 return new HikariDataSource(config);
}

2.4. The javax.sql.DataSource implementation
Connection pool implementations, whether provided by a Java EE/Jakarta EE application server or
a third-party library, are exposed as an implementation of the javax.sql.DataSource interface.

The most important method exposed by this interface is the getConnection() method, which will
return a connection based on the configuration of the data source. For a 'basic' (non-pooling) data
source this will create a new, physical, connection. For a connection pool, this will create a logical
connection that wraps a physical connection from the pool.



The 'user' of a connection should not care whether the connection is pooled or not,
the connection should behave the same from the perspective of the user, and the
user should use the connection in the same way. This should allow for swapping
between a non-pooling and pooling data source in an application without any
changes to the code using the data source.

When the application is done with the connection, it should call close() on the connection. A
connection from a non-pooling data source will be closed. For a logical connection from a
connection pool, close() will invalidate the logical connection (which will make it behave like a
closed connection), and return the underlying physical connection to the connection pool, where it
will be either kept for re-use, or maybe closed.

 Use a connection for the shortest scope, and time, necessary for correct behaviour.

Chapter 2. Obtaining a connection

20

Get a connection, and close it as soon as you’re done. When using a connection
pool, this has the added benefit that just a few connections can serve the needs of
the application.

2.5. The javax.sql.ConnectionPoolDataSource
implementation
The javax.sql.ConnectionPoolDataSource interface represents a factory that creates PooledConnection
objects for use by a connection pool. For example, application servers support the use of a
ConnectionPoolDataSource to populate their connection pool.

A PooledConnection instance represents a physical connection to a database and is a source of
logical connections that a connection pool can hand out to the application. Closing this logical
connection returns the physical connection back into the pool.


Contrary to its name, a ConnectionPoolDataSource is not a connection pool! It is a
factory for physical connections that can be used by a connection pool.

Jaybird provides org.firebirdsql.ds.FBConnectionPoolDataSource as an implementation of the
javax.sql.ConnectionPoolDataSource interface.

2.6. The javax.sql.XADataSource implementation
The JDBC 2.0 specification introduced the javax.sql.XADataSource interface that should be used to
access connections that can participate in distributed transactions with JTA-compatible transaction
coordinator. This gives applications possibility to use two-phase commit to synchronize multiple
resource managers.

Just like javax.sql.ConnectionPoolDataSource, applications normally don’t access an XADataSource
implementation directly, instead it is used as a factory of connections for an XA-enabled data
source. To the application this is usually exposed as a javax.sql.DataSource.

Jaybird provides org.firebirdsql.ds.FBXADataSource as an implementation of the
javax.sql.XADataSource interface.

Chapter 2. Obtaining a connection

21

Chapter 2. Obtaining a connection

22

Chapter 3. Handling exceptions
Exception handling is probably the most important aspect that directly affects the stability of the
application. Correct handling of the error cases guarantees correct functioning of the client code as
well as the database server.

All methods of the interfaces defined in the JDBC specification throw instances of
java.sql.SQLException to notify about error conditions that happen during request processing. The
SQLException is a checked exception, which forces Java programmers to either handle it with the
try/catch clause or redeclare it in the method signature.

3.1. Working with exceptions
Exception handling becomes even more important if we consider that this topic is either ignored or
presented in incorrect form in most JDBC tutorials. The official JDBC tutorial from Oracle
[https://docs.oracle.com/javase/tutorial/jdbc/index.html] briefly mentions that exceptions should be handled
by using try/catch blocks only at the end of the course, but neither reasons for doing this nor the
best practices are presented.

There are good reasons to think about exception handling in your applications before you start
coding. First of all, it is very hard to change the exception handling pattern in existing code. The
changes will affect all layers above the place where the changes in exception handling are made
and the new application must be thoroughly tested after the change.

Another reason was already mentioned on the beginning of this chapter: instances of
java.sql.SQLException are the only way for the RDBMS server or JDBC driver to notify about the
error condition that happened during request processing. By checking the error code which is sent
with the exception, an application can try to recover from the error.

And last but not least, there is resource management. When an exception happens in a method, the
execution flow of Java code differs from the normal flow, and only correctly coded application will
ensure that all allocated resources will be released. The resources in our case are JDBC connections,
statements, result sets, etc. All these objects not only take memory in the Java Virtual Machine of
the application, but also consume memory on the server, which, worst case, can lead to an
unintended Denial-of-Service attack, as the database server can no longer service requests.

A good exception handling strategy requires you do distinguish three kinds of error conditions:

• errors that the database access layer can detect and correctly handle; for example, the
application might decide to re-execute the business transaction if the database server returned
a deadlock error;

• errors that database access layer can detect, but is unable to handle; usually those are all
database errors that do not have special handling routines;

• errors that database access layer cannot detect without additional code unrelated to the
functionality of this layer; basically, all runtime exceptions fall into this category.

The handling strategy then consists of

Chapter 3. Handling exceptions

23

https://docs.oracle.com/javase/tutorial/jdbc/index.html

• processing the selected error codes for cases described above;

• converting the generic SQLException into a generic business error in the application (this can be
throwing some generic exception defined in the application, but can also be an entry in the
application event log and short message that asks to retry the operation later);

• some emergency tactics, since the error that happened (e.g. NullPointerException or
OutOfMemoryError) was not considered while the application was created, thus possibly leaving it
in an unknown state; further operation should be considered dangerous and the corresponding
execution branch has to be halted.

The problem of resource management can be solved if resource allocation and release happens in
the same code block and is protected with a try-with-resources block. The code to recover from
error conditions should use try/catch blocks. An example of such error and resource handling code
is presented below.

Typical resource allocation and error handling patterns

String updateString = "update COFFEES " +
 "set SALES = ? where COF_NAME like ?";

try (PreparedStatement updateSales = con.prepareStatement(updateString)) {
 int [] salesForWeek = {175, 150, 60, 155, 90};
 String [] coffees = {"Colombian", "French_Roast",
 "Espresso", "Colombian_Decaf",
 "French_Roast_Decaf"};

 int len = coffees.length;

 for(int i = 0; i < len; i++) {
 updateSales.setInt(1, salesForWeek[i]);
 updateSales.setString(2, coffees[i]);

 try {
 updateSales.executeUpdate();
 } catch(SQLException ex) {
 if (ex.getErrorCode() == ...) {
 // do something
 } else {
 throw new BusinessDBException(ex);
 }
 }
 }
}

The nested try/catch block shows you an example of handling a deadlock error if it happens (first
scenario according to our classification), otherwise the exception is converted and passed to the
upper layers (second scenario). As you see, there is no special treatment to the third scenario.

A possible bug in the JDBC driver could have generated runtime exception in the
PreparedStatement.executeUpdate() method, which would lead to the statement handle leakage if

Chapter 3. Handling exceptions

24

the try-with-resource block had not been used to do the resource cleanup. As a rule of thumb,
always declare and allocate resources in a try-with-resources block: the resource will be
automatically closed/freed at the end of the block, even if exceptions occur.

Such coding practice might look weird, because on first sight the whole purpose of using the
PreparedStatement is neglected: the statement is prepared, used only once and then deallocated.
However, when this practice is combined with connection and statement pooling, it brings
enormous advantage to the application code. The code becomes much more
manageable — resource allocations and release happen in the same method and the software
developer does not need to remember the places where the same prepared statement might be
used. A statement pool will either reuse the statement or it will prepare a new one, if it detects that
all pooled prepared statements are currently in use. As a side effect, the application will always use
the minimum number of statements handles, which in turn reduces the used resources on the
database side.


Jaybird currently provides no statement pooling itself, availability will depend on
the connection pool library used. Consult the documentation of your connection
pool to see if — and how — it provides statement pooling.

3.2. Warnings
Some errors returned by Firebird are treated as warnings. They are converted into instances of
java.sql.SQLWarning class in the JDBC layer. These exceptions are not thrown from the driver
methods, but added to a connection instance.

 Currently, no warning is added to Statement or ResultSet objects.

Each next warning is appended to the tail of the warning chain. To read the warning chain, use the
code presented below.

Example how to work with warnings

import java.sql.*;
....
SQLWarning warning = connection.getWarnings();
while (warning != null) {
 // do something with the warning
 warning = warning.getNextWarning();
}

or

Alternative example how to work with warnings

import java.sql.*;
....
for (Throwable throwable : connection.getWarnings()) {
 if (throwable instanceof SQLWarning) {

Chapter 3. Handling exceptions

25

 SQLWarning warning = (SQLWarning) throwable;
 // do something with the warning
 }
}

This second example will iterate over the first warning, all its causes (if any), and then on to other
warnings (if any), and so on.

To clear existing warning, call Connection.clearWarnings() method.

3.3. java.sql.SQLException in Jaybird
TODO Information in section is possibly outdated or incomplete

An SQLException is a special exception that is thrown by the JDBC connectivity component in case of
an error. Each instance of this exception is required to carry the vendor error code (if applicable)
and a SQL state according to the X/Open SQLstate or SQL:2003 specifications. Firebird and Jaybird
use SQL:2003 SQL state codes.[1]

When multiple SQL errors happened, they are joined into a chain. Usually the most recent
exception is thrown to the application, the exceptions that happened before can be obtained via
SQLException.getNextException() method. Alternatively, SQLException.iterator() can be used to
walk over all exceptions in the chain and their causes.

The JDBC specification provides an exception hierarchy that allows an application to react on the
error situations using regular exception handling rather than checking the error code. Error codes
may still be necessary for handling specific error cases.

The JDBC 4.3 specification defines the following exception hierarchy:[2]

• java.sql.SQLException — root of all JDBC exceptions

◦ java.sql.BatchUpdateException — thrown when batch of the statements did not execute
successfully; contains the result of batch execution.

◦ java.sql.SQLClientInfoException — thrown when client info properties could not be set.

◦ java.sql.SQLNonTransientException — thrown when retrying the same action without fixing
the underlying cause would fail.

▪ java.sql.SQLDataException — thrown for data-related errors, for example conversion
errors, too long values. (SQLstate class 22)

▪ java.sql.SQLFeatureNotSupportedException — thrown to indicate that an optional JDBC
feature is not supported by the driver or the data source (Firebird). (SQLstate class 0A)

▪ java.sql.SQLIntegrityConstraintViolationException — thrown for constraint violations.
(SQLstate class 23)

▪ java.sql.SQLInvalidAuthorizationSpecException — thrown for authorization failures.
(SQLstate class 28)

▪ java.sql.NonTransientConnectionException — thrown for connection operations that will

Chapter 3. Handling exceptions

26

not succeed on retry without fixing the underlying cause. (SQLstate class 08)

▪ java.sql.SQLSyntaxErrorException — thrown for syntax errors. (SQLstate class 42)

◦ java.sql.SQLRecoverableException — thrown when an action might be retried by taking
recovery actions and restarting the transaction.

◦ java.sql.SQLTransientException — thrown when the action might succeed if it is retried
without further recovery steps.

▪ java.sql.SQLTimeoutException — thrown when the queryTimeout or loginTimeout has
expired.

▪ java.sql.SQLTransactionRollbackException — thrown when the statement was
automatically rolled back because of deadlock or other transaction serialization failures.
(SQLstate class 40)

▪ java.sql.SQLTransientConnectionException — thrown for connection operations that
might succeed on retry without any changes. (SQLstate class 08)

◦ java.sql.SQLWarning should only be used to signal warnings, it should never be thrown by a
JDBC driver.

▪ java.sql.DataTruncation — thrown when a data truncation error happens, can also be
used as a warning.


Unfortunately Jaybird does not yet fully use this exception hierarchy, we are
working to improve this with the next versions of Jaybird.

Each of three layers in Jaybird use exceptions most appropriate to the specific layer. TODO List
needs revision

• org.firebirdsql.gds.GDSException is an exception that directly corresponding to the error
returned by the database engine. Instances of this class are thrown by the GDS
implementations. Upper layers either convert these exceptions into the ones appropriate to that
layer or catch them if driver can handle the error condition.

• Subclasses of javax.resource.ResourceException are thrown by the JCA layer when an error
happens in the JCA-related code. Upper layer converts this exception into a subclass of
java.sql.SQLException. If the ResourceException was caused by the GDSException, latter is
extracted during conversion preserving the error code. If ResourceException was caused by an
error condition not related to an error returned by the database engine, error code of the
SQLException remains 0.

• Subclasses of javax.transaction.XAException are thrown when an XA protocol error happens in
JCA layer. Similar to the previous case, XAException can wrap the GDSException, which are
extracted during exception conversion to preserve the error code.

• Subclasses of java.sql.SQLException are thrown by the JDBC layer. Jaybird has a few subclasses
that might be interesting to the application:

◦ org.firebirdsql.jdbc.FBDriverConsistencyCheckException — this exception is thrown when
driver detects an internal inconsistent state. SQL state is HY000.

◦ org.firebirdsql.jdbc.FBDriverNotCapableException — this exception is thrown when an
unsupported method is called. SQL state is 0A000.

Chapter 3. Handling exceptions

27

◦ org.firebirdsql.jdbc.FBSQLParseException — this exception is thrown when incorrect
escaped syntax is detected. SQL state is 42000.

◦ org.firebirdsql.jdbc.field.TypeConversionException — this exception is thrown when the
driver is asked to perform a type conversion that is not defined in the JDBC specification. For
a table of allowed type conversions see Data Type Conversion Table.

3.4. SQL states
Jaybird supports the SQLstate values from the SQL:2003 standard,[1] however only few states nicely
map into the Firebird error codes.

Applications can use the SQLstate codes in the error handling routines which should handle errors
that are returned from different databases. But since there is little agreement between RDBMS
vendors, this method can be used only for very coarse error distinction.

3.5. Useful Firebird error codes
Contrary to the SQLstates, the Firebird native error codes are extremely useful to determine the
type of an error that happened.

Here you can find a short list of error codes, symbolic names of a corresponding constant in a
org.firebirdsql.gds.ISCConstants class, the error message and short explanation of an error.

TODO Needs revising now Jaybird tries to pull the most important error code to the top

3.5.1. DDL Errors

DDL errors happen during execution of DDL requests, and two primary error codes are used in
Firebird while executing the DDL operations. There are few other rare cases not mentioned here,
but the corresponding error messages contain enough information to understand the reason of an
error.

335544351L isc_no_meta_update "unsuccessful metadata update"

This error is returned when the requested DDL
operation cannot be completed, for example the
application tries to define a primary key that
will exceed the maximum allowed key size.

335544510L isc_lock_timeout In combination with isc_obj_in_use
(335544453L), this means that the DDL
command tries to modify an object that is used
in some other place, usually in another
transaction. The complete error message will
contain the name of the locked object.

Chapter 3. Handling exceptions

28

335544569L isc_dsql_error If the third error code is either
isc_dsql_datatype_err or isc_dsql_command_err,
then additional error codes and arguments
specify the reason why the operation has failed.

3.5.2. Lock Errors

Lock errors are reported by Firebird primarily when the application tries to modify a record which
is already modified by a concurrent transaction. Depending on the transaction parameters such
error can be reported either right after detection or after waiting some defined timeout hoping that
concurrent transaction will either commit or rollback and eventually release the resource. More
information on transaction locking modes can be found in section Using transactions.

335544345L isc_lock_conflict "lock conflict on no wait transaction"

This error is returned when a "no wait"
transaction needs to acquire a lock but finds
another concurrent transaction holding that
lock.

Instead of waiting the predefined timeout
hoping that concurrent transaction will either
commit or rollback, an error is returned to
notify an application about the situation.

335544510L isc_lock_timeout "lock time-out on wait transaction"

Similar to the isc_lock_conflict, but this error is
returned when the lock timeout that was
specified for the current transaction expired
while waiting for a lock.

Another source of this error are DDL operations
that try to obtain a lock on a database object
that is currently used in some other place.

335544336L isc_deadlock "deadlock"

Two transactions experience a deadlock when
each of them has a lock on a resource on which
the other is trying to obtain a lock.

3.5.3. Referential Integrity Errors

Referential integrity constraints ensure that the database remains in a consistent state after the
DML operation and/or whole transaction is completed. Three primary error codes are returned
when the defined constraints are violated. The error messages are self-explanatory.

335544665L isc_unique_key_violation violation of PRIMARY or UNIQUE KEY constraint
"{0}" on table "{1}"

Chapter 3. Handling exceptions

29

335544558L isc_check_constraint Operation violates CHECK constraint {0} on
view or table {1}

335544466L isc_foreign_key violation of FOREIGN KEY constraint "{0}" on
table "{1}"

3.5.4. DSQL Errors

This group contains secondary codes for the primary error code isc_dsql_error (335544569L), that
has a message "Dynamic SQL Error".

In most situations, Jaybird 3 and higher will put this secondary error code in the SQLException
instead of isc_dsql_error.

335544573L isc_dsql_datatype_err "Data type unknown"

Usually this error is reported during DDL
operation when the specified data type is either
unknown or cannot be used in the specified
statement. However it can also happen in DML
operation, e.g. when an ORDER BY clause contains
unknown collation, or if a parameter is used in a
SELECT clause without explicit cast.

335544570L isc_dsql_command_err "Invalid command"

Error happens either during parsing the
specified SQL request or by handling the DDL
command.

3.5.5. Other Errors

This table contains other errors that might be interesting to the application developer, however
they do not fall into any of the previous categories.

335544321L isc_arith_except "arithmetic exception, numeric overflow, or
string truncation"

Happens at runtime when an arithmetic
exception happens, like division by zero or the
numeric overflow (e.g. number does not fit the
64 bits limit).

Another source of this error are string
operations, like string concatenation producing
a too long string, impossibility to transliterate
characters between character sets, etc.

Future versions of Firebird will provide a
secondary code to distinguish the exact reason
of an error.

Chapter 3. Handling exceptions

30

335544348L isc_no_cur_rec "no current record for fetch operation"

Happens when the application asks Firebird to
fetch a record, but no record is available for
fetching.

Java applications should never get this error,
since checks in the JDBC driver should prevent
the application from executing a fetch operation
on the server side.

335544374L isc_stream_eof "attempt to fetch past the last record in a
record stream"

Application tries to execute fetch operation after
all records have already been fetched.

Similar to the previous error, Java applications
should not get this error due to the checks that
happen before issuing the fetch request to the
server.

335544517L isc_except "exception {0}"

An custom exception has been raised on the
server. Java application can examine the
underlying GDSException to extract the
exception message.

335544721L isc_network_error Unable to complete network request to host
"{0}"

This error is thrown when Jaybird cannot
establish a connection to the database server
due to a network issues, e.g. host name is
specified incorrectly, Firebird has not been
started on the remote host, firewall
configuration prevents client from establishing
the connection, etc.

[1] it is possible sometimes X/Open SQLstates are used

[2] excluding those defined for javax.sql.rowset

Chapter 3. Handling exceptions

31

Chapter 3. Handling exceptions

32

Chapter 4. Executing statements
After obtaining a connection, the next thing to do is to execute an SQL statement. The JDBC
specification distinguishes three kinds of statements:

1. Regular statements to execute constant SQL statements (statements without parameters),

2. prepared statements to execute SQL statements with parameters,

3. and callable statements to execute stored procedures.

4.1. The java.sql.Statement interface
The java.sql.Statement interface is the simplest interface to execute SQL statements. It
distinguishes three types:

• statements that return a result set, or, in other words, queries;

• statements that change the state of the database but return no result set;

• INSERT statements (or other statements with similar behaviour) that return the values of the
columns which were generated by the database engine while inserting the record.

Let’s check one of the typical usages shown below. In general the usage pattern of the statement
consists of three steps.

Typical way to execute query to get information about the user

try (Statement stmt = connection.createStatement(); ①
 ResultSet rs = stmt.executeQuery(
 "SELECT firstName, lastName FROM users" +
 " WHERE userId = 5") ②
){
 if (rs.next()) {
 String firstName = rs.getString(1);
 String lastName = rs.getString(2);
 }
} ③

① Create a Statement object by calling the createStatement() method of the Connection object.

② Use the Statement object by calling its methods, in our case we execute a simple query SELECT
firstName, lastName FROM users WHERE userId = 5. Processing of the query result will be
discussed in details in Working with result sets.

③ Close the result set and statement to release all allocated resources. In our example this is done
using the try-with-resources block. With try-with-resources, Java takes care of closing resources
in the right order, even if exceptions occur, or if a resource was not allocated (say, if
executeQuery throws an exception).

As the connection object is the factory for the statement objects, this puts a constraint on the object
lifetime: statements are bound to the connection; when the connection is closed, all statements that

Chapter 4. Executing statements

33

were created by that connection become invalid and the resources allocated by them are released.
However, despite that these resources are released when the connection closes, it is strongly
recommended to use the try-with-resources block, to guarantee that resources are released as soon
as possible because of reasons that will be discussed later.

A statement can be executed using the following methods:

• Statement.executeQuery(String) — executes a SELECT statement and returns a result set. If the
specified statement does not produce a result set, an SQLException is thrown after statement
execution.

• Statement.executeUpdate(String) — executes other DML[1] (e.g. INSERT, UPDATE, DELETE) or DDL[2]

statements and returns the number of updated rows. If the specified statement is a query or
otherwise produces a result set, an SQLException is thrown.

• Statement.execute(String) — executes a statement and returns true when the statement
returned a result set, otherwise an update was executed and false is returned. You can use
Statement.getResultSet() method to get the result of the executed query, or you can use
Statement.getUpdateCount() when you have executed update statement.

These execute methods have several variants for additional features covered in the reference
section Generated keys retrieval.

A statement is closed by calling the Statement.close() method, or by using a try-with-resources
which calls close() behind the scenes. After a close, the statement object is invalid and cannot be
used anymore.

It is allowed to use the same statement object to execute different types of queries one after
another. The code below contains a short example which first performs a select to find the ID of the
user 'Joe Doe', and if the record is found, it enables his account.



The concatenation of values into a query string as done in this example is not a
good practice as it can leave your code vulnerable to SQL injection.

In this specific case it is safe to do as the values are integers. In general: don’t do
this, use a prepared statement with parameters instead.

Using the same statement object multiple times to enable user account

try (Statement stmt = connection.createStatement();
 ResultSet rs = stmt.executeQuery(
 "SELECT userId FROM users " +
 "WHERE lastName = 'Doe' AND firstName = 'Joe'")) {
 if (rs.next()) {
 int userId = rs.getInt(1);

 int rowsUpdated = stmt.executeUpdate(
 "UPDATE accounts SET accountEnabled = 1 " +
 "WHERE userId = " + userId);

 if (rowsUpdated == 0)

Chapter 4. Executing statements

34

 rowsUpdated = stmt.executeUpdate(
 "INSERT INTO accounts (userId, enabled) " +
 "VALUES (" + userId + ", 1)");

 if (rowsUpdated != 1)
 throw new SomeException(
 "User was not updated correctly.");
 }
}

The way the code is constructed is quite tricky because of the result set lifetime constraints that are
defined by the JDBC specification, please read the chapter Working with result sets for more details.

However, here it is done intentionally to emphasize that a single object is used to execute SELECT
and UPDATE/INSERT statements. It also shows how to check whether the executed statement modified
expected number of rows — the application first tries to update the account and only if no rows
were updated, it inserts new record into the accounts table.



This example of 'try update, then insert' approach can be better handled using
MERGE [https://www.firebirdsql.org/file/documentation/html/en/refdocs/fblangref40/firebird-40-

language-reference.html#fblangref40-dml-merge] or UPDATE OR INSERT
[https://www.firebirdsql.org/file/documentation/html/en/refdocs/fblangref40/firebird-40-

language-reference.html#fblangref40-dml-update-or-insert].

When an application needs to execute DDL statements, it is recommended to use the
Statement.execute(String) method, as in this case the amount of modified records makes little
sense. The next example shows the creation of database tables using this method.

Example of creating database tables

try (Statement stmt = connection.createStatement()) {
 stmt.execute("CREATE TABLE customer(" +
 "customerId INTEGER NOT NULL PRIMARY KEY, " +
 "firstName VARCHAR(20) NOT NULL, " +
 "lastName VARCHAR(40) NOT NULL)");
}

As mentioned earlier, the Statement.execute(String) method can also be used to execute statements
of an unknown type.

try (Statement stmt = connection.createStatement()) {
 boolean hasResultSet = stmt.execute(sql);
 if (hasResultSet) {
 ResultSet rs = stmt.getResultSet();
 ...
 } else {
 int updateCount = stmt.getUpdateCount();
 ...

Chapter 4. Executing statements

35

https://www.firebirdsql.org/file/documentation/html/en/refdocs/fblangref40/firebird-40-language-reference.html#fblangref40-dml-merge
https://www.firebirdsql.org/file/documentation/html/en/refdocs/fblangref40/firebird-40-language-reference.html#fblangref40-dml-update-or-insert

 }
}

It is worth mentioning that according to the JDBC specification getResultSet() and getUpdateCount()
methods can be only called once per result, and in case of using Firebird, that means once per
executed statement, since Firebird does not support multiple results from a single statement.
Calling the methods the second time will cause an exception.

4.2. Statement behind the scenes
The previous examples requires us to discuss the statement object dynamics, its life cycle and how
it affects other subsystems in details.

4.2.1. Statement dynamics

When a Java application executes a statement, a lot more operations happen behind the scenes:

1. A new statement object is allocated on the server. Firebird returns a 32-bit identifier of the
allocated object, a statement handle, that must be used in next operations.

2. An SQL statement is compiled into an executable form and is associated with the specified
statement handle.

3. Jaybird asks the server to describe the statement and Firebird returns information about the
statement type and possible statement input parameters (we will discuss this with prepared
statements) and output parameters, namely the result set columns.

4. If no parameters are required for the statement, Jaybird tells Firebird to execute statement
passing the statement handle into corresponding method.

After this Jaybird has to make a decision depending on the operation that was called.

• If Statement.execute() was used, Jaybird only checks the statement type to decide whether it
should return true, telling the application that there is a result set for this operation, or false, if
the statement does not return any result set.

• If Statement.executeUpdate() was called, Jaybird asks Firebird to give the information about the
number of affected rows. This method can be called only if the statement type tells that no
result set can be returned by the statement.

When called for queries, an exception is thrown despite the fact that the statement was
successfully executed on the server.

• If Statement.executeQuery() was called and the statement type indicates that a result set can be
returned, Jaybird constructs a ResultSet object and returns it to the application. No additional
checks, like whether the result set contains rows, are performed, as that is the responsibility of
the ResultSet object.

If this method is used for statements that do not return result set, an exception is thrown
despite the fact that the statement was successfully executed on the server.

Chapter 4. Executing statements

36


The described behaviour may change in the future by throwing the exception
before executing the statement.

When an application does not need to know how many rows were modified, it should use the
execute() method instead of executeUpdate(). This saves an additional call to the server to get the
number of modified rows which can increase the performance in the situations where network
latency is comparable with the statement execution times.

The execute() method is also the only method that can be used when the application does not know
what kind of statement is being executed (for example, an application that allows the user to enter
SQL statements to execute).

After using the statement object, an application should close it. Two different possibilities exist: to
close the result set object associated with the statement handle and to close the statement
completely.

If, for example, we want to execute another query, it is not necessary to completely release the
allocated statement. Jaybird is required only to compile a new statement before using it, in other
words we can skip step 1 (allocating a new statement handle). This saves us one round-trip to the
server over the network, which might improve the application performance.

If we close the statement completely, the allocated statement handle is no longer usable. Jaybird
could allocate a new statement handle, however the JDBC specification does not allow use of a
Statement object after close() method has been called.

4.2.2. Statement lifetime and DDL

Step 2 (compiling the SQL statement) in the previous section is probably the most important, and
usually, most expensive part of the statement execution life cycle.

When Firebird server receives the "prepare statement" call, it parses the SQL statement and
converts it into the executable form: BLR. BLR, or Binary Language Representation, contains low-
level commands to traverse the database tables, conditions that are used to filter records, defines
the order in which records are accessed, indices that are used to improve the performance, etc.

When a statement is prepared, it holds the references to all database object definitions that are
used during that statement execution. This mechanism preserves the database schema consistency,
it saves the statement objects from "surprises" like accessing a database table that has been
removed by another application.

However, holding a reference on the database objects has one very unpleasant effect: it is not
possible to upgrade the database schema, if there are active connections to the database with open
statements referencing the objects being upgraded. In other words, if two application are running
and one is trying to modify the table, view, procedure or trigger definition while another one is
accessing those objects, the first application will receive an error 335544453 “object is in use”.

To avoid this problem, it is strongly recommended to close the statement as soon as it is no longer
needed. This invalidates the BLR and release all references to the database objects, making them
available for the modification.

Chapter 4. Executing statements

37

Special care should be taken when statement pooling is used. In that case, statements are not
released even if the close() method is called. The only possibility to close the pooled statements is
to close the pooled connections. Please check the documentation of your connection pool for more
information.

4.3. The java.sql.PreparedStatement interface
As we have seen, Jaybird already performs internal optimization when it comes to multiple
statement execution — it can reuse the allocated statement handle in subsequent calls. However,
this improvement is very small and sometimes can even be negligible compared to the time needed
to compile the SQL statement into the BLR form.

The PreparedStatement interface addresses such inefficiencies. An object that implements this
interface represents a precompiled statement that can be executed multiple times. If we use the
execution flow described in the "Statement dynamics" section, it allows us to go directly to step 4
for repeated executions.

However, executing the same statement with the same values makes little sense, unless we want to
fill the table with the same data, which usually is not the case. Therefore, JDBC provides support for
parametrized statements — SQL statements where literals are replaced with question marks (?), so-
called positional parameters. The application then assigns values to the parameters before
executing the statement.

Our first example in this chapter can be rewritten as shown below. At first glance the code becomes
more complicated without any visible advantage.

Example for user account update rewritten using prepared statements

try (PreparedStatement stmt1 = connection.prepareStatement(
 "SELECT userId FROM users WHERE " +
 "lastName = ? AND firstName = ?")) {
 stmt1.setString(1, "Doe");
 stmt1.setString(2, "Joe");
 try (ResultSet rs = stmt1.executeQuery()) {

 if (rs.next()) {
 int userId = rs.getInt(1);

 try (PreparedStatement stmt2 =
 connection.prepareStatement(
 "UPDATE accounts SET accountEnabled = 1 " +
 "WHERE userId = ?")) {
 stmt2.setInt(1, userId);

 int rowsUpdated = stmt2.executeUpdate();

 if (rowsUpdated == 0) {
 try (PreparedStatement stmt3 =
 connection.prepareStatement(
 "INSERT INTO accounts " +

Chapter 4. Executing statements

38

 "(userId, enabled) VALUES (?, 1)")) {
 stmt3.setInt(1, userId);
 rowsUpdated = stmt3.executeUpdate();
 }
 }
 if (rowsUpdated != 1)
 throw new SomeException(
 "User was not updated correctly.");
 }
 }
 }
}

• First, instead of using just one statement object we have to use three, one per statement.

• Second, before executing the statement we have to set parameters first. As is shown in the
example, parameters are referenced by their position. The PreparedStatement interface provides
setter methods for all primitive types in Java as well as for some widely used SQL data types
(BLOBs, CLOBs, etc). The NULL value is set by calling the PreparedStatement.setNull(int) method.

• Third, we are now forced to use four nested try-with-resources blocks, which makes code less
readable.

So, where’s the advantage? First of all, prepared statements parameters protect against SQL
injection as the values are sent separately from the statement itself. It is not possible to change the
meaning of a statement due to incorrect string concatenation, so data leaks or other problems
caused by SQL injection can be avoided. Second of all, the driver handles conversion of Java object
types to the correct format for the target datatype in Firebird: you don’t need to convert a Java
value to the correct string literal format for Firebird’s SQL dialect.

To address some identified problems, we can redesign our application to prepare those statements
before calling that code (for example in a constructor) and close them when the application ends. In
that case the code can be more compact (see the next example). Unfortunately, the application is
now responsible for prepared statement management. When a connection is closed, the prepared
statement object will be invalidated, but the application will not be notified. And when the
application uses similar statements in different parts of the application, the refactoring might affect
many classes, possibly destabilizing the code. So, the refactoring on this example is not something
we want to do.

Rewritten example to let application manage prepared statements

// prepared statement management
PreparedStatement queryStmt =
 connection.prepareStatement(queryStr);
PreparedStatement updateStmt =
 connection.prepareStatement(updateStr);
PreparedStatement insertStmt =
 connection.prepareStatement(insertStr);

......................

Chapter 4. Executing statements

39

// query management
queryStmt.clearParameters();
queryStmt.setString(1, "Doe");
queryStmt.setString(2, "Joe");
try (ResultSet rs = queryStmt.executeQuery()) {
 if (rs.next()) {
 int userId = rs.getInt(1);

 updateStmt.clearParameters();
 updateStmt.setInt(1, userId);
 int rowsUpdated = updateStmt.executeUpdate();

 if (rowsUpdated == 0) {
 insertStmt.clearParameters();
 insertStmt.setInt(1, userId);
 rowsUpdated = insertStmt.executeUpdate();
 }

 if (rowsUpdated != 1)
 throw new SomeException(
 "User was not updated correctly.");
 }
}
......................

// prepared statement cleanup
insertStmt.close();
updateStmt.close();
queryStmt.close();

The answer to the advantage question is hidden in the prepareStatement(String) call. Since the
same statement can be used for different parameter values, the connection object could have a
possibility to perform prepared statement caching. A JDBC driver can ignore the request to close
the prepared statement, save it internally and reuse it each time application asks to prepare an SQL
statement that is known to the connection.

 Jaybird currently does not perform statement caching

4.4. The java.sql.CallableStatement interface
The CallableStatement interface extends PreparedStatement with methods for executing and
retrieving results from stored procedures. It was introduced in the JDBC specification to unify
access to the stored procedures across different database systems. The main difference to
PreparedStatement is that the procedure call is specified using the portable escape syntax[3]:

Unified escape syntax for stored procedure execution

procedure call ::= {[?=]call <procedure-name>(<params>)}

Chapter 4. Executing statements

40

params ::= <param> [, <param> ...]

Each stored procedure is allowed to take zero or more input parameters, similar to the
PreparedStatement interface. After being executed, a procedure can either return data in the output
parameters or it can return a result set that can be traversed. Though the interface is generic
enough to support database engines that can return both and have multiple result sets. These
features are of no interest to Jaybird users, since Firebird does not support them.

The IN and OUT parameters are specified in one statement. The syntax above does not allow to
specify the type of the parameter, therefore additional facilities are needed to tell the driver which
parameter is will contain output values, the rest are considered to be IN parameters.

4.4.1. Firebird stored procedures

Firebird stored procedures represent a piece of code written in the PSQL language that allows SQL
statement execution at the native speed of the engine and provides capabilities for a limited
execution flow control. The PSQL language is not a general purpose language, therefore its
capabilities are limited when it comes to interaction with other systems.

Firebird stored procedures can be classified as follows:

• Procedures that do not return any results. These are stored procedures that do not contain the
RETURNS keyword in their header.

• Procedures that return only a single row of results. These are stored procedures that contain the
RETURNS keyword in their header, but do not contain the SUSPEND keyword in their procedure
body. These procedures can be viewed as functions that return multiple values. These
procedures are executed by using the EXECUTE PROCEDURE statement.

• Procedures that return a result set, also called “selectable stored procedures”. These are stored
procedures that contain the RETURNS keyword in their header and the SUSPEND keyword in their
procedure body, usually within a loop. Selectable procedures are executed using the "SELECT *
FROM myProcedure(…)" SQL statement. It is also allowed to use the EXECUTE PROCEDURE statement,
however that might produce strange results, since for selectable procedures it is equivalent to
executing a SELECT statement, but doing only one fetch after the select. If the procedure
implementation relies on the fact that all rows that it returns must be fetched, the logic will be
broken.

Consider the following stored procedure that returns factorial of the specified number.

Source code for the procedure that multiplies two integers

CREATE PROCEDURE factorial(
 max_value INTEGER
) RETURNS (
 factorial INTEGER
) AS
 DECLARE VARIABLE temp INTEGER;
 DECLARE VARIABLE counter INTEGER;
BEGIN

Chapter 4. Executing statements

41

 counter = 0;
 temp = 1;
 WHILE (counter <= max_value) DO BEGIN
 IF (counter = 0) THEN
 temp = 1;
 ELSE
 temp = temp * counter;
 counter = counter + 1;
 END
 factorial = temp;
END

This procedure can be executed using the EXECUTE PROCEDURE call. When it is done in isql, the
output looks as follows.

Output of the EXECUTE PROCEDURE call in isql

SQL> EXECUTE PROCEDURE factorial(5);

 FACTORIAL
============
 120

Now let’s modify this procedure to return each intermediate result to the client.

Modified procedure that returns each intermediate result

CREATE PROCEDURE factorial_selectable(
 max_value INTEGER
) RETURNS (
 row_num INTEGER,
 factorial INTEGER
) AS
 DECLARE VARIABLE temp INTEGER;
 DECLARE VARIABLE counter INTEGER;
BEGIN
 counter = 0;
 temp = 1;
 WHILE (counter <= max_value) DO BEGIN
 IF (row_num = 0) THEN
 temp = 1;
 ELSE
 temp = temp * counter;
 factorial = temp;
 row_num = counter;
 counter = counter + 1;
 SUSPEND;
 END
END

Chapter 4. Executing statements

42

If you create this procedure using the isql command line tool and then execute SELECT * FROM
factorial_selectable(5), the output will be like this:

Output of the modified procedure

SQL> SELECT * FROM factorial_selectable(5);

 ROW_NUM FACTORIAL
============ ============
 0 1
 1 1
 2 2
 3 6
 4 24
 5 120

4.4.2. Using the CallableStatement

Let’s see how the procedures defined above can be accessed from Java.

First, we can execute this procedure from the first example in the previous section using EXECUTE
PROCEDURE and PreparedStatement, however this approach requires some more code for result set
handling.

Example of using the PreparedStatement to call executable procedure

try (PreparedStatement stmt = connection.prepareStatement(
 "EXECUTE PROCEDURE factorial(?)")) {

 stmt.setInt(1, 2);

 try (ResultSet rs = stmt.executeQuery()) {
 rs.next(); // move cursor to the first row

 int result = rs.getInt(1);
 }
}

However, the standard for calling stored procedures in JDBC is to use the CallableStatement. The
call can be specified using the escaped syntax, but native Firebird EXECUTE PROCEDURE syntax is also
supported.

Accessing the executable procedure via CallableStatement

try (CallableStatement stmt = connection.prepareCall(
 "{call factorial(?,?)}")) {

 stmt.setInt(1, 2);
 stmt.registerOutParameter(2, Types.INTEGER);

Chapter 4. Executing statements

43

 stmt.execute();

 int result = stmt.getInt(2);
}

Please note the difference in the number of parameters used in the examples. The first example
contained only IN parameter on position 1 and the OUT parameter was returned in the ResultSet
on the first position, so it was accessed via index 1.

The latter example additionally contains the OUT parameter in the call. We have used the
CallableStatement.registerOutParameter method to tell the driver that the second parameter in our
call is an OUT parameter of type INTEGER. Parameters that were not marked as OUT are considered
by Jaybird as IN parameters. Finally, the EXECUTE PROCEDURE factorial(?) SQL statement is prepared
and executed. After executing the procedure call we get the result from the appropriate getter
method.

It is worth mentioning that the stored procedure call preparation happens in the
CallableStatement.execute method, and not in the prepareCall method of the Connection object.
Reason for this deviation from the specification is that Firebird does not allow to prepare a
procedure without specifying parameters and set them only after the statement is prepared. It
seems that this part of the JDBC specification is modelled after the Oracle RDBMS and a
workaround for this issue had to be delivered. Another side effect of this issue is, that it is allowed
to intermix input and output parameters, for example in the "IN, OUT, IN, OUT, OUT, IN" order. Not
that it makes much sense to do this, but it might help in some cases when porting applications from
another database server.

It is also allowed to use a procedure call parameter both as an input and output parameter. It is
recommended to use this only when porting applications from the database servers that allow
INOUT parameter types, such as Oracle.

The actual stored procedure call using the CallableStatement is equivalent to the call using the
prepared statement as shown in the first example. There is no measurable performance differences
when using the callable statement interface.

The JDBC specification allows another syntax for the stored procedure calls:

Calling stored procedure using different syntax

try (CallableStatement stmt = connection.prepareCall(
 "{?= call factorial(?}")) {

 stmt.registerOutParameter(1, Types.INTEGER);
 stmt.setInt(2, 2);

 stmt.execute();

 int result = stmt.getInt(1);
}

Chapter 4. Executing statements

44

Note, that input parameter now has index 2, and not 1 as in the previous example. This syntax
seems to be more intuitive, as it looks like a function call. It is possible to use this syntax for stored
procedures that return more than one parameter by combining code from the second and the last
examples.

Firebird stored procedures can also return result sets. This is achieved by using the SUSPEND
keyword inside the procedure body. This keyword returns the current values of the output
parameters as a single row to the client.

The following example is more complex and shows a stored procedure that computes a set of
factorial of the numbers up to the specified number of rows.

The SELECT SQL statement is the natural way of accessing the selectable procedures in Firebird.
You “select” from such procedures using the Statement or PreparedStatement objects.

With minor issues it is also possible to access selectable stored procedures through the
CallableStatement interface. The escaped call must include all IN and OUT parameters. After the call
is prepared, parameters are set the same way. However, the application must explicitly tell the
driver that selectable procedure is used and access to the result set is desired. This is done by
calling a Jaybird-specific method as shown in the example below. When this is not done, the
application has access only to the first row of the result set. TODO Outdated?

The getter methods from the CallableStatement interface will provide you access only to the first
row of the result set. To get access to the complete result set you have to either call the executeQuery
method or the execute method followed by getResultSet method.

Example of using selectable stored procedure via escaped syntax

import java.sql.*;
import org.firebirdsql.jdbc.*;
...
try (CallableStatement stmt = connection.prepareCall(
 "{call factorial(?, ?, ?)}")) {

 FirebirdCallableStatement fbStmt =
 (FirebirdCallableStatement)stmt;
 fbStmt.setSelectableProcedure(true);

 stmt.setInt(1, 5);
 stmt.registerOutParameter(2, Types.INTEGER); // first OUT
 stmt.registerOutParameter(3, Types.INTEGER); // second OUT

 try (ResultSet rs = stmt.executeQuery()) {

 while(rs.next()) {
 int firstCol = rs.getInt(1); // first OUT
 int secondCol = rs.getInt(2); // second OUT
 int anotherSecondCol = stmt.getInt(3); // second OUT
 }
 }

Chapter 4. Executing statements

45

}

Note that OUT parameter positions differ when they are accessed through the ResultSet interface
(the firstCol and secondCol variables in our example). They are numbered in the order of their
appearance in the procedure call starting with 1.

When OUT parameter is accessed through the CallableStatement interface (the anotherSecondCol
parameter in our example), the registered position should be used. In this case the result set can be
used for navigation only.

4.4.3. Describing Output and Input Parameters

The PreparedStatement.getMetaData method is used to obtain description of the columns that will be
returned by the prepared SELECT statement. The method returns an instance of
java.sql.ResultSetMetaData interface that among other descriptions provides the following:

• column type, name of the type, its scale and precision if relevant;

• column name, its label and the display size;

• name of the table, to which this column belongs;

• information whether the column is read-only or writable, whether it contains signed numbers,
whether it can contain NULL values, etc.

Additionally, the JDBC 3.0 specification introduced the interface java.sql.ParameterMetaData that
provides similar information for the input parameters of both PreparedStatement and
CallableStatement objects.



Due to the implementation specifics of the escaped syntax support for callable
statements, it is not allowed to call getParameterMetaData before all OUT parameters
are registered. Otherwise, the driver will try to prepare a procedure with an
incorrect number of parameters and the database server will generate an error.

4.5. Batch Updates
Batch updates are intended to group multiple update operations to be submitted to a database
server to be processed at once. Firebird 3.0 and earlier did not provide support for such
functionality, so Jaybird 4 and earlier emulate it by issuing separate update commands.

Since: Jaybird 5 Firebird 4.0 added support for server-side batch updates, which is implemented in
Jaybird 5 for prepared statements, see Server-side Batch Updates.

4.5.1. Batch Updates with java.sql.Statement interface

The Statement interface defines three methods for batch updates: addBatch, executeBatch and
clearBatch. It is allowed to add arbitrary INSERT/UPDATE/DELETE or DDL statement to the batch group.
Adding a statement that returns a result set is an error.

Chapter 4. Executing statements

46

Example of batch updates using Statement object

try (Statement stmt = connection.createStatement()) {
 stmt.addBatch("UPDATE products " +
 "SET amount = amount - 1 WHERE id = 1");
 stmt.addBatch("INSERT INTO orders(id, amount) VALUES(1, 1)");

 int[] updateCounts = stmt.executeBatch();
}

The JDBC specification recommends to turn the auto-commit mode off to guarantee standard
behavior for all databases. The specification explicitly states that behavior in auto-commit case is
implementation defined.

In auto-commit mode, Jaybird executes a batch in a single transaction, i.e. the "all-or-nothing"
principle. A new transaction is started before the batch execution and is committed if there were no
exceptions during batch execution, or is rolled back if at least one batch command generated an
error.

The Statement.executeBatch method submits the job to the database server. In case of successful
execution of the complete batch, it returns an array of integers containing update counts for each of
the commands. Possible values are:

• 0 or positive value — an update count for the corresponding update/DDL statement.

• Statement.SUCCESS_NO_INFO — driver does not have any information about the update count, but
it knows that statement was executed successfully.

The Statement.executeBatch method closes the current result set if one is open. After execution, the
batch is cleared. Calling execute, executeUpdate and executeQuery before the batch is executed does
not have any effect on the currently added batch statements.

If at least one statement from the batch fails, a java.sql.BatchUpdateException is thrown. Jaybird
will stop executing statements from batch after the first error. In auto-commit mode it will also roll
back the transaction. An application can obtain update counts for the already executed statements
using getUpdateCounts method of the BatchUpdateException class. The returned array will always
contain fewer entries than there were statements in the batch, as it will only report the update
counts of successfully executed statements.

4.5.2. Batch Updates with java.sql.PreparedStatement and
java.sql.CallableStatement

Using batch updates with a prepared statement is conceptually similar to the java.sql.Statement
approach. The main difference is that only one statement can be used, but with different sets of
parameter values.

Example of batch updates with PreparedStatement

try (PreparedStatement stmt = connection.prepareStatement(
 "INSERT INTO products(id, name) VALUES(?, ?)")) {

Chapter 4. Executing statements

47

 stmt.setInt(1, 1);
 stmt.setString(2, "apple");
 stmt.addBatch();

 stmt.setInt(1, 2);
 stmt.setString(2, "orange");
 stmt.addBatch();

 int[] updateCounts = stmt.executeBatch();
}

Example of batch updates with CallableStatement

try (CallableStatement stmt = connection.prepareCall(
 "{call add_product(?, ?)")) {
 stmt.setInt(1, 1);
 stmt.setString(2, "apple");
 stmt.addBatch();

 stmt.setInt(1, 2);
 stmt.setString(2, "orange");
 stmt.addBatch();

 int[] updateCounts = stmt.executeBatch();
}

4.5.3. Server-side Batch Updates

Since: Jaybird 5
Since: Firebird 4.0

Jaybird 5 adds support for server-side batch updates when connecting to Firebird 4.0 or higher.
This support comes with a number of limitations:

• Only supported on the pure Java protocol, not on native or embedded.

• Only supported on PreparedStatement.

◦ The Statement batch behaviour is not supported by server-side batch updates.

◦ The CallableStatement implementation is more complex than prepared statement, so the
decision was made not to reimplement this using server-side batch updates. The
implementation might be rewritten in a future Jaybird version, if there is sufficient demand.
As a workaround, use execute procedure or {call procedure_name(...)} from a
PreparedStatement.

• Requesting generated-keys will fall back to emulated behaviour as server-side batches do not
support returning values produced by the RETURNING clause.

• Firebird 4.0 has additional facilities to send BLOB values as part of the batch update, but this is
not yet used by Jaybird.

Chapter 4. Executing statements

48

When server-side batch support is unavailable, either because the server doesn’t support it, or
because of above limitations, or if the connection property useServerBatch is false, Jaybird will fall
back to the emulated behaviour.

By default, Jaybird will request the maximum server-side batch buffer size (256MB as of Firebird
4.0). A smaller buffer can be requested with connection property serverBatchBufferSize (value in
bytes). Jaybird does not track the consumption of the server-side batch buffer. Attempting to
execute a batch larger than this buffer will fail with error “Internal buffer overflow - batch too big”
(isc_batch_too_big, 335545198). The 256MB buffer used with Jaybird defaults on Firebird 4.0 is
sufficient to accommodate several thousand rows at maximum row size (a naive calculation says
around 4000 rows, but this doesn’t account for all overhead of a row).

4.6. Escape Syntax
The escape syntax was introduced as a portable JDBC-specific syntax to represent parts of the SQL
language that are (or were) usually implemented differently by database vendors. The escaped
syntax is also used to define features that might not be implemented by the database server, but
can have an appropriate implementation in the driver.

The JDBC specification defines escaped syntax for the following

• scalar functions

• date and time literals

• outer joins

• calling stored procedures

• escape characters for LIKE clauses

4.6.1. Scalar Functions

Escaped syntax for the scalar function call is defined as

{fn <function-name> (argument list)}

For example, {fn concat('Firebird', 'Java')} results in the code ('Firebird'||'Java') in the actual
statement sent to the server. "Supported JDBC Scalar Functions" provides a list of supported scalar
functions.

4.6.2. Date and Time Literals

It is possible to include date and time literals in SQL statements. To guarantee that each database
will interpret the literal identically, the JDBC specification provides the following syntax to specify
them:

Date literal escaped syntax:

Chapter 4. Executing statements

49

{d 'yyyy-mm-dd'}

Time literal escaped syntax:

{t 'hh:mm:ss'}

Timestamp literal syntax (fractional seconds part '.f…' can be omitted):

{ts 'yyyy-mm-dd hh:mm:ss.f...'}

4.6.3. Outer Joins

Due to the various approaches to specify outer joins (for instance, the Oracle "(+)" syntax), the JDBC
specification provides the following syntax:

{oj <outer join>}

where the outer join is specified as

<outer join> ::=
 <table name> {LEFT|RIGHT|FULL} OUTER JOIN
 {<table name> | <outer join>} ON >search condition>

An example SQL statement would look like this:

SELECT * FROM {oj tableA a
 LEFT OUTER JOIN tableB b ON a.id = b.id}

4.6.4. Stored Procedures

The escaped syntax for stored procedures is described in details in section The
java.sql.CallableStatement interface.

4.6.5. LIKE Escaped Characters

The percent sign (‘%’) and underscore (‘_’) characters are wild cards in the LIKE predicate of SQL. To
interpret them literally they must be preceded by the backslash character (‘\’) that is called the
escape character. The escaped syntax for this case identifies which character is used as an escape
character:

{escape '<escape character>'}

Chapter 4. Executing statements

50

[1] DML — Data Manipulation Language

[2] DDL — Data Definition Language. This term is used to group all statements that are used to manipulate database schema, i.e.
creation of tables, indices, views, etc.

[3] escape syntax in limited form also works for Statement and PreparedStatement

Chapter 4. Executing statements

51

Chapter 4. Executing statements

52

Chapter 5. Working with result sets
When a SELECT statement is executed, the results of the query are returned through the
implementation of the java.sql.ResultSet interface.

5.1. ResultSet properties

5.1.1. ResultSet Types

The JDBC specification defines three types of result sets

• TYPE_FORWARD_ONLY — the result set is not scrollable, cursor can only move forward. When the
TRANSACTION_READ_COMMITTED isolation level is used, the result set will return all rows that are
satisfying the search condition at the moment of fetch (which will be every fetch size calls to
ResultSet.next()). In other cases, the result set will return only rows that were visible at the
moment of the transaction start.

• TYPE_SCROLL_INSENSITIVE — the result set is scrollable, the cursor can move back and forth, can
be positioned on the specified row. Only rows satisfying the condition at the time of query
execution are visible.

• TYPE_SCROLL_SENSITIVE, is not supported by Firebird and Jaybird. Jaybird allows an application to
ask for this type of result set, however in compliance with the JDBC specification, the type is
"downgraded" to the TYPE_SCROLL_INSENSITIVE and a corresponding warning is added to the
connection object.



Due to a missing support of scrollable cursors in Firebird 4.0 and earlier, support
for scrollable results set (TYPE_SCROLL_INSENSITIVE result set type) is implemented
by fetching the complete result set to the client. Scrolling happens in memory on
the client. This can have adverse effect on the system memory usage and
performance when the result set is large.

Since: Jaybird 5
Since: Firebird 5.0

Starting with Firebird 5.0, server-side scrollable cursors are supported. Jaybird 5
introduced support for scrolling non-holdable result set when the connection
property scrollableCursor is set to value SERVER, and the connection is a pure Java
connection (not native or embedded). A future version may enable this behaviour
by default.

5.1.2. ResultSet Concurrency

Result set concurrency specifies whether the result set object can be updated directly or a separate
SQL request should be used to update the row. Result sets that allow direct modification using the
ResultSet.updateXXX methods are usually used in GUI applications which allow in-place editing of
the underlying result set.

The result set concurrency is specified during statement creation and cannot be changed later.

Chapter 5. Working with result sets

53

Jaybird supports two types of result set concurrency:

• CONCUR_READ_ONLY is available for all types of result sets. It tells the driver that direct update of
the result set is not possible and all ResultSet.updateXXX methods should throw an exception.

• CONCUR_UPDATABLE is supported only under certain conditions that are needed for the driver to
correctly construct a DML request that will modify exactly one row. These conditions are:

◦ the SELECT statement that generated the result set references only one table;

◦ all columns that are not referenced by the SELECT statement allow NULL values, otherwise it
won’t be possible to insert new rows;

◦ the SELECT statement does not contain the DISTINCT predicate, aggregate functions, joined
tables, or stored procedures;

◦ the SELECT statement references all columns of the tables primary key definition or the
RDB$DB_KEY column.

5.1.3. ResultSet Holdability

Result set holdability informs the driver whether result sets should be kept open across commits.
ResultSet.HOLD_CURSORS_OVER_COMMIT tells the driver to keep the result set object open, while
ResultSet.CLOSE_CURSORS_AT_COMMIT tells driver to close them on commit.

When an application calls Connection.commit(), the Firebird server closes all open result sets. It is
not possible to tell the server to keep a result set open over commit unless "commit retaining" mode
is used. This mode is global for the complete connection and is not suitable for holdability control
on a statement level. Use of "commit retaining" mode is believed to have an undesired side effect
for read-write transactions as it inhibits garbage collection. Because of these reasons "commit
retaining" is not used in Jaybird during normal execution. Applications are able to commit the
transaction keeping the result sets open by executing a “COMMIT RETAIN” SQL statement.

To support holdable result sets, Jaybird will upgrade the result set to TYPE_SCROLL_INSENSITIVE to
cache all rows locally, even if you asked for a TYPE_FORWARD_ONLY result set. See also ResultSet Types.



When connecting to Firebird 5.0 with Jaybird 5 or higher and connection property
scrollableCursor=SERVER, a holdable result set will not use server-side scrollable
cursor, but instead emulate by caching. Server-side scrollable cursors do not
support the holdable behaviour.

5.2. ResultSet manipulation
ResultSet objects are created when either Statement.executeQuery(String) or
Statement.getResultSet() methods are called, or when obtaining the generated keys from
Statement.getGeneratedKeys(). Statement.getResultSet() is used in combination with
Statement.execute(String) and can be called only once per result set (see the following two
examples).


The current implementation does not allow calls to the getResultSet() method
after using the executeQuery(String) method of the Statement class. The JDBC

Chapter 5. Working with result sets

54

specification is unclear on this topic and JDBC drivers of different vendors treat it
differently.

Using Statement.executeQuery(String) method

try (Statement stmt = connection.createStatement();
 ResultSet rs = stmt.executeQuery("SELECT * FROM myTable")) {
 // process result set
}

Using Statement.getResultSet() method

try (Statement stmt = connection.createStatement()) {
 boolean hasResultSet = stmt.execute("SELECT * FROM myTable");
 if (hasResultSet) {
 try (ResultSet rs = stmt.getResultSet()) {
 // process result set
 }
 }
}

5.2.1. Accessing the values in the result set

Depending on the type of the result set, it is possible to move the cursor either forward only (next
example [#using-forward-only]) or using absolute and relative positioning (second example below [#

using-scrollable-updatable]).

Values of the result set are obtained by calling the corresponding getter method depending on the
type of column. For example, the ResultSet.getInt(1) method returns the value of the first column
as an int value. If the value of the column is not integer, Jaybird tries to convert it according to the
"Data Type Conversion Table" specified in Data Type Conversion Table. If conversion is not possible,
an exception is thrown.

There are two possibilities to obtain data from the result set columns: by column label or by column
position. Position of the first column is 1. Names supplied to getter methods are case-insensitive.
The search only happens in column aliases — or in JDBC terminology the column label. If a column
has no alias, the original column name is considered its alias. If there is more than one column
matching the specified name (even if the original names were quoted), the first match is taken.

When getters for primitive types are used and the value in the result set is NULL, the driver returns
the default value for that type. For example, getInt() method will return 0. To know whether the
value is really 0 or NULL, you have to call ResultSet.wasNull() method after calling the get method.

Getters that return object values (getString, getDate, getObject, etc.) will return a null value for
columns containing NULL. Calling wasNull after object get methods is possible but unnecessary.

Example of using forward-only result sets

try (Statement forwardStatement = connection.createStatement();

Chapter 5. Working with result sets

55

#using-forward-only
#using-forward-only
#using-scrollable-updatable

 ResultSet rs = forwardStatement.executeQuery(
 "SELECT id, name, price FROM myTable")) {

 while(rs.next()) {
 int id = rs.getInt(1);
 String name = rs.getString("name");
 double price = rs.getDouble(3);
 }
}

5.2.2. Updating records in the result set

Scrollable cursors are especially useful when result of some query is displayed by the application
which also allows the user to directly edit the data and post the changes to the database.

Example of using scrollable and updatable result sets

try (Statement scrollStatement = connection.createStatement(
 ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_UPDATABLE);
 ResultSet rs = scrollStatement.executeQuery(
 "SELECT id, name, price FROM myTable");
 rs.absolute(1); // move to the first row
 rs.updateString(2, anotherName); // update the name
 rs.updateRow(); // post changes to the db

 rs.moveToInsertRow();
 rs.updateInt(1, newId);
 rs.updateString(2, newName);
 rs.updateDouble(3, newPrice);
 rs.insertRow();
 rs.moveToCurrentRow();

 rs.relative(-2);
}

The code example above shows how to update first row, insert new one and after that move two
records backwards.

An application can also update the current row using so called “positioned updates” on named
cursors. This technique can be used only with forward-only cursors, since application can update
only the row to which the server-side cursor points to. In case of scrollable cursors the complete
result set is fetched to the client and then the server-side cursor is closed. The example below [#

using-positioned-updates] shows how to use positioned updates.

First, the application has to specify the name of the cursor and the list of the columns that will be
updated before the query is executed. This name is later used in the UPDATE statement as shown in
the example.

Chapter 5. Working with result sets

56

#using-positioned-updates

Example of using the positioned updates

connections.setAutoCommit(false);
try (Statement selectStmt = connection.createStatement();
 Statement updateStmt = connection.createStatement()) {
 selectStmt.setCursorName("someCursor");

 try (ResultSet rs = selectStmt.executeQuery(
 "SELECT id, name, price FROM myTable " +
 "FOR UPDATE OF myColumn")) {

 while(rs.next()) {
 ...
 if (someCondition) {
 updateStmt.executeUpdate("UPDATE myTable " +
 "SET myColumn = myColumn + 1 " +
 "WHERE CURRENT OF " + rs.getCursorName());
 }
 }
 }
}

5.2.3. Closing the result set

A result set is closed by calling the ResultSet.close() method. This releases the associated server
resources and makes the ResultSet object available for garbage collection. It is strongly
recommended to explicitly close result sets in auto-commit mode or
ResultSet.TYPE_SCROLL_INSENSITIVE result sets, because this releases memory used for the cached
data. Whenever possible, use try-with-resources.

The result set object is also closed automatically, when the statement that created it is closed or re-
executed. In auto-commit mode, the result set is closed automatically if any statement is executed
on the same connection.

Chapter 5. Working with result sets

57

Chapter 5. Working with result sets

58

Chapter 6. Using transactions
Transactions are used to group SQL statements into a single block that satisfies so-called ACID
properties: atomicity, consistency, isolation and durability. In other words, all statements executed
within transaction will either succeed and their results will be permanently stored in the database
or the effect of the statement execution will be undone.

6.1. JDBC transactions
Firebird supports multiple concurrent transactions over the same database connection. This allows
applications that work via the native Firebird API to save the number of network connections,
which in turn saves the resources on the server[1].

This model however cannot be applied to each database engine in the world and the designers of
the JDBC API have chosen a model where each database connection has one and only one active
transaction associated with it. Also, unlike the Firebird model, where transactions require explicit
start, the JDBC specification requires the driver to start transaction automatically as soon as a
transactional context is needed.

The following code shows a very simple example of using transactions in JDBC where a
hypothetical intruder that increases salary of each employee twice and uses explicit transaction
control in JDBC. They also try to hide their identity and if the operations succeed, they commit the
transaction, otherwise the roll the changes back.

Example of explicit transaction control

Connection connection = ...

connection.setAutoCommit(false); ①

try (Statement stmt = connection.createStament()) {
 stmt.executeUpdate("UPDATE employee " +
 " SET salary = salary * 2"); ②

 // ... do some more changes to database
 // to hide the identity of the person
 // that messed up the salary information
 // by deleting the audit trails logs, etc.

 stmt.executeUpdate("DELETE FROM audit_trails");

 connection.commit(); ③
} catch(SQLException ex) {
 connection.rollback(); ④
}

To use transactions, the application first switches the auto-commit mode off (see below for more
information), then creates a java.sql.Statement object, and executes an UPDATE statement. Please

Chapter 6. Using transactions

59

note, that there is no explicit transaction start, a new transaction will be started right before
executing the statement (step 2).

If we work with a database where not only referential integrity is preserved, but also reasonable
security rules are encoded in the triggers, it will raise an error preventing cleaning the audit trails
information. In this case the intruder chooses to undo all the changes they made, so that nobody
notices anything. But if no security rules are implemented, they commit the transaction.


Firebird PSQL has an IN AUTONOMOUS TRANSACTION block that can be used to prevent
such abuse and prevent audit-records from being wiped out by a transaction
rollback. Alternatively, you can use an external table to store the audit log.

When a connection uses explicit transaction control, each transaction must be finished by calling
the commit() or rollback() methods of the Connection object before the connection is closed. If a
transaction was not finished, but the close method is called, the active transaction is rolled back
automatically. This also happens when the transaction was not finished, the connection was not
closed explicitly and that Connection object became eligible for garbage collection. Removed in:
Jaybird 5 In this case, the close() method is implicitly invoked by the class finalizer, which in turn
rolls the transaction back.



Given the non-deterministic delay of garbage collection, make sure to explicitly
end the transaction and close the connection. Do not rely on the garbage collector
for this.

Since: Jaybird 5 A number of finalizers have been removed in Jaybird 5, so
transaction rollback through garbage collection has become even less
deterministic (though it is likely still to occur when the connection is forcibly
closed).

6.2. Auto-commit mode
Each newly created connection by default has the auto-commit property enabled. In other words,
the duration of the transaction is limited by the duration of statement execution, or more
formally — the transaction is ended when the statement is completed. The point when statement
execution is considered complete, is defined in the specification as:

Rules when the statement is completed in auto-commit mode

• For insert, update, delete and DDL statements, the statement is complete as soon as it has
finished executing.

• For select statements, statement is complete when the associated result set is closed. The result
set is closed as soon as one of the following occurs:

◦ all rows have been retrieved

◦ the associated Statement object is re-executed

◦ another Statement object is executed on the same connection

• For CallableStatement objects, the statement is complete, when all associated result sets have
been closed.

Chapter 6. Using transactions

60

If there is an ongoing transaction and the value of the auto-commit property is changed, the current
transaction is committed.

Note, when a connection is obtained via a javax.sql.DataSource object and container managed
transactions are used (for example, the application is executing inside an EJB container), it is an
error to call setAutoCommit method.

Special care should be taken when using multiple statements in auto-commit mode. The JDBC 2.0
specification did not fully define the rules for the statement completion as it did not define the
behavior of multiple ResultSet objects created using the same connection object in auto-commit
mode.

Since Firebird does not allow the result set to remain open after the transaction ends, Jaybird 1.5.x
and below cached the complete result set in memory when SELECT statements were executed and
the transaction was committed. This had an adverse effect on allocated memory when the result set
is big, especially when it contains BLOB fields. The JDBC 3.0 specification addressed this unclear
situation (see above) and Jaybird 2.1 was improved to correctly handle them. It also allowed to
reduce the memory footprint — the driver no longer caches non-scrollable and non-holdable result
sets in memory.

However, some Java applications that do not conform the current JDBC specification might no
longer work with Jaybird 2.1 and above unless additional steps are taken.

The piece of code below works perfectly with explicit transaction control. However, it won’t work
correctly with auto-commit with a driver — like Jaybird — that complies with the JDBC 3.0
specification, when the selectStmt and updateStmt object are created by the same connection object
(step 1). When the UPDATE is executed in step 3, the result set produced by the SELECT statement
must be closed before the execution. When the Java application tries to fetch the next record by
calling the rs.next() method, it will receive an SQLException with a message "The result set is
closed".

The only correct solution to this situation is to fix the application by either using explicit
transaction control, or by using two connection objects, one for SELECT statement and one for
UPDATE statement.

Non-compliant usage of nested statements in auto-commit mode

try (Statement selectStmt = connection.createStatement(); ①
 Statement updateStmt = connection.createStatement();
 ResultSet rs = selectStmt.executeQuery(
 "SELECT * FROM myTable")) {
 while(rs.next()) { ②
 int id = rs.getInt(1);
 String name = rs.getString(2);

 updateStmt.executeUpdate("UPDATE anotherTable SET " +
 " name = '" + name + "' WHERE id = " + id); ③
 }
}

Chapter 6. Using transactions

61

Unfortunately, not all applications can be changed either because there is no source code available
or, simply, because any change in the code requires complete release testing of the software. To
address this, Jaybird 2.1 introduced the connection parameter defaultHoldable which makes result
sets holdable by default. The holdable result sets will be fully cached in memory, but won’t be
closed automatically when transaction ends.[2] This property also affects the default holdability of
result sets when auto-commit is disabled.

See Default holdable result sets for more information.

6.3. Read-only Transactions
A transaction can be declared read-only to reduce the possibility of lock conflicts. In general, this
makes little sense for Firebird, because of its multi-generational architecture, where readers do not
block writers and vice versa. However, in some cases it can be useful.

It is not allowed to connect with a read-write transaction to a database located on a read-only
media, for example, a CD-ROM. The reason is that, to guarantee consistency of the read-write
transactions, Firebird has to increase the transaction identifier when transaction ends, and to store
the new value on the so-called Transaction Inventory Page even if no changes were made in that
transaction. This requirement can be relaxed if transaction is declared read-only and the engine
ensures that no data can be modified.

Another reason is that long-running read-write transactions inhibit the process of collecting
garbage, i.e. a process of identifying previous versions of the database records that are no longer
needed and releasing the occupied space for the new versions. Without garbage collection the
database size will grow very fast and the speed of the database operations will decrease, because
the database engine will have to check all available record versions to determine the appropriate
one.

Therefore, if you are sure that application won’t modify the database in the transaction, use the
setReadOnly method of the java.sql.Connection object to tell the server that the transaction is read-
only.

6.4. Transaction Isolation Levels
The ANSI/ISO SQL standard defines four such levels, each next one weaker than the previous. These
isolation levels are also used in the JDBC specification:

Table 1. JDBC transaction isolation levels and their characteristics

JDBC isolation level Description

TRANSACTION_SERIALIZABLE Transactions with this isolation level prohibit phantom
reads, the situation when one transaction reads all rows
satisfying the WHERE condition, another transaction
inserts a row satisfying that condition, and first
transaction re-executes the statement.

Chapter 6. Using transactions

62

JDBC isolation level Description

TRANSACTION_REPEATABLE_READ This isolation level prevents non-repeatable reads, a
situation when a row is read in one transaction, then
modified in another transaction, and later re-read in the
first transaction. In this case different values had been
read within the same transaction.

TRANSACTION_READ_COMMITTED Transactions with this isolation level can see only
committed records. However, it does not prevent so-called
non-repeatable reads and phantom reads.

TRANSACTION_READ_UNCOMMITTED The weakest isolation level, or better to say level with no
isolation. Such transactions can see the not yet committed
changes to the data in the database from the concurrently
running transactions.

Firebird, however, defines other isolation levels: read_committed, concurrency and consistency. Only
the read_committed isolation level can be mapped to the same level defined by the ANSI/ISO SQL
standard. Dirty reads are prevented, non-repeatable reads as well as phantom reads can occur.

The concurrency isolation level is stronger than repeatable read isolation defined in ANSI/SQL
standard and satisfies the requirements of a serializable isolation level, however, unlike RDBMSes
with locking concurrency control, it guarantees better performance.

And finally Firebird provides a consistency isolation level which in combination with table
reservation feature guarantees the deadlock-free execution of transactions. A transaction will be
prevented from starting if there is already another one with the overlapping sets of the reserved
tables. This isolation level guarantees truly serial history of transaction execution.

To satisfy the JDBC specification Jaybird provides a following default mapping of the JDBC
transaction isolation levels into Firebird isolation levels:

• TRANSACTION_READ_COMMITTED is mapped to read_committed isolation level in
Firebird — any changes made inside a transaction are not visible outside a transaction until the
transaction is committed. A transaction in read-committed mode sees all committed changes
made by other transactions even if that happened after start of the current transaction.

• TRANSACTION_REPEATABLE_READ is mapped to concurrency isolation level in Firebird — any
changes made inside this transaction are not visible outside a transaction until the transaction
is committed. A transaction in repeatable-read sees only those changes that were committed
before the transaction started. Any committed change in another transaction that happened
after the start of this transaction is not visible in this transaction.

• TRANSACTION_SERIALIZABLE is mapped into consistency isolation level in Firebird — any
modification to a table happens in serial way: all transactions wait until the current
modification is done. This mode can be considered as a traditional pessimistic locking scheme,
but the lock is placed on the whole table. See section "Table Reservation" for more information.

The default mapping is specified in the Jaybird code and can be overridden via the connection
properties.

Chapter 6. Using transactions

63

• via the tpbMapping property that specifies the name of the ResourceBundle with the new mapping
of the isolation level;

• via the direct specification of the JDBC transaction isolation level. The following code contains
an example of such operation, the values in the mapping are described in section "Transaction
Parameter Buffer".

• via the data source configuration.

Overriding the default isolation level mapping

Properties props = new Properties();
props.setProperty("user", "SYSDBA");
props.setProperty("password", "masterkey");
props.setProperty("TRANSACTION_READ_COMMITTED",
 "read_committed,no_rec_version,write,nowait");

Connection connection = DriverManager.getConnection(
 "jdbc:firebirdsql://localhost:3050/c:/example.fdb",
 props);



The property accepts the “short” names as shown, or the “long” names with the
isc_dpb_ prefix, as defined in org.firebirdsql.jaybird.fb.constants.TpbItems
(Jaybird 5) or org.firebirdsql.gds.ISCConstants (older versions). For readability,
we recommend using the “short” names.

The overridden mapping is used for all transactions started within the database connection. If the
default mapping is overridden via the data source configuration, it will be used for all connections
created by the data source.

6.5. Savepoints
Savepoints provide finer-grained control over transactions by providing intermediate steps within
a larger transaction. Once a savepoint has been set, a transaction can be rollback to that point
without affecting preceding work.

To set a savepoint, use the following code:

Example of using savepoints

Connection connection = ...;
connection.setAutoCommit(false);

try (Statement stmt = connection.createStatement()) {
 stmt.executeUpdate(
 "INSERT INTO myTable(id, name) VALUES (1, 'John')");

 Savepoint savePoint1 =
 connection.setSavepoint("savepoint_1");

Chapter 6. Using transactions

64

 stmt.executeUpdate(
 "UPDATE myTable SET name = 'Ann' WHERE id = 1");
 // ...

 connection.rollback(savePoint1);

 // at this point changes done by second update are undone
}

Note, rolling back to the savepoint automatically releases and invalidates any savepoints that were
created after the released savepoint.

If the savepoint is no longer needed, you can use the Connection.releaseSavepoint method to release
system resources. After releasing a savepoint it is no longer possible to roll back the current
transaction to that savepoint. Attempts to call the rollback(Savepoint) method will result in an
SQLException. Savepoints that have been created within a transaction are automatically released
when that transaction is committed or rolled back.

6.6. Transaction Parameter Buffer
The behavior of Firebird transactions is internally controlled by the Transaction Parameter Buffer
(TPB), which specifies different transaction properties:

• the transaction isolation level;

• the transaction’s read-only or read-write mode;

• the lock conflict resolution mode — wait or no wait;

• the lock wait timeout;

• and, finally, the table reservations — their names and reservation modes.

The TPB is automatically generated depending on the transaction isolation level specified for the
java.sql.Connection object. Additionally, if the connection is set to read-only mode, this is reflected
in the TPB by appropriate constant.

Usually there is no need to manipulate the TPB directly. However, the lock resolution mode as well
as table reservations cannot be specified by using the standard JDBC interfaces. For the cases where
this is needed, Jaybird provides an extension of the JDBC standard.

Example of specifying custom TPB

FirebirdConnection fbConnection =
 connection.unwrap(FirebirdConnection.class);

TransactionParameterBuffer tpb =
 fbConnection.createTransactionParameterBuffer();

tpb.addArgument(TpbItems.isc_tpb_read_committed);
tpb.addArgument(TpbItems.isc_tpb_rec_version);
tpb.addArgument(TpbItems.isc_tpb_write);

Chapter 6. Using transactions

65

tpb.addArgument(TpbItems.isc_tpb_wait);
tpb.addArgument(TpbItems.isc_tpb_lock_timeout, 15);

fbConnection.setTransactionParameters(tpb);

The above presents an example of populating the TPB with custom parameters.



The constants used in the examples in this chapter were introduced in Jaybird 5.
Earlier versions have constants of the same name defined in
org.firebirdsql.gds.ISCConstants, and similarly named constants in
org.firebirdsql.gds.TransactionParameterBuffer (i.e. without isc_tpb_ prefix and
fully capitalized). Those older constants will be removed in Jaybird 6 in favour of
org.firebirdsql.jaybird.fb.constants.TpbItems.

6.6.1. Isolation level

Firebird supports three isolation levels: read_committed, concurrency and consistency which are
represented by appropriate constants in the TpbItems class. The isolation level specifies the way the
database engine processes the record versions on read operations. The concurrency isolation level is
also often called SNAPSHOT and the consistency isolation level — SNAPSHOT TABLE STABILITY.

In consistency and concurrency modes, the Firebird database engine loads the different versions of
the same record from disk and checks the “timestamps” of each version and compares it with the
“timestamp” of the current transaction. The record version with the highest timestamp that is
however lower or equal to the timestamp of the current transaction is returned to the application.
This effectively returns the version of the record that was committed before the current transaction
started, and guarantees that neither non-repeatable reads nor phantom reads can ever occur.

In read_committed mode, the Firebird database engine accesses the record version with the highest
timestamp for which the corresponding transaction is marked as committed. This prevents the
engine from reading the record versions which were modified in concurrent transactions that are
not yet committed or were rolled back for whatever reason. However, such mode allows non-
repeatable reads as well as phantom reads if a concurrent transaction that modified records or
inserted new ones has been committed.

The read_committed isolation mode requires another constant that specifies the behavior of the
transaction when it sees a record version with a timestamp that belongs to a currently running
transaction which is not yet committed.

Most applications require the TpbItems.isc_tpb_rec_version mode, or READ COMMITTED RECORD
VERSION, which is shown in the code above. In this mode database engine fetches the latest
committed version as described before.

The TpbItems.isc_tpb_no_rec_version constant tells the database engine to report a lock conflict
when an uncommitted record version is seen while fetching data from the database, also known as
READ COMMITTED NO RECORD VERSION. The outcome of the operation is then controlled by the lock
resolution mode (see section Lock resolution mode).

The TpbItems.isc_tpb_read_consistency uses the READ COMMITTED READ CONSISTENCY mode introduced

Chapter 6. Using transactions

66

in Firebird 4.0.



Firebird 4.0 and higher default to always use isc_tpb_read_consistency

With default settings, Firebird 4.0 and higher will ignore isc_tpb_rec_version and
isc_tpb_no_rec_version, and behave as if isc_tpb_read_consistency was specified.
This is controlled through the ReadConsistency setting in firebird.conf or — per
database — in databases.conf.

6.6.2. Read-only transactions

The read-only or read-write transaction mode is controlled by two constants:

• TpbItems.isc_tpb_read and

• TpbItems.isc_tpb_write

When the read-write mode (constant isc_tpb_write) is specified, the database engine stores the
“timestamp” of the new transaction in the database even when no modification will be made in the
transaction. The “timestamp” affects the garbage collection process, since the database engine
cannot release records that were modified in transactions with higher “timestamps” even when
these record versions are no longer needed (in other words, when there are already newer versions
of the records). Thus, long-running read-write transaction inhibits the garbage collection even
when no modifications are done in it.

Therefore, it is recommended to set the read-only mode for the transaction when it is used for read
operations.


Since: Firebird 4.0 With the READ COMMITTED CONSISTENCY mode introduced in
Firebird 4.0, even read-only transactions will inhibit garbage collection.

6.6.3. Lock resolution mode

Relational database systems that use pessimistic locking for concurrency control lock the records
regardless of the operation type, read or write. When an application tries to read a record from the
database, the database engine tries to obtain a "read lock" to that record. If the operation succeeds
and the application later tries to update the record, the lock is upgraded to a “write lock”. And
finally, if the resource is already locked for write, a concurrent transactions cannot lock it for
reading, since the system cannot allow the transaction to make a decision based on data that might
be rolled back later. This approach significantly decreases concurrency. However, databases
systems that employ a record versioning mechanism do not have such restrictions because each
transaction “sees” its own version of the record. The only possible conflict happens when two
concurrent transactions try to obtain a “write lock” for the same database record.

Firebird belongs to the latter, and on read_committed and concurrency isolation levels it behaves
appropriately — there are no lock conflicts between readers and writers, and only writers
competing for the same resource raise a lock conflict. However, on the consistency isolation level
Firebird emulates the behavior of systems with pessimistic locking — read operations will conflict
with write operations. Even more, the locks are obtained for whole tables (see "Table Reservation"
for details).

Chapter 6. Using transactions

67

The following table summarizes the above for Firebird 2.0. It shows that read-committed or
repeatable read transactions conflict only when they simultaneously update the same rows. In
contrast, a consistency transaction conflicts with any transaction running in read-write mode, e.g.
as soon as a consistency transaction gets write access to a table, other read-write transactions are
not allowed to make changes in that table.

Table 2. Lock conflicts within one table depending on the isolation level

 Read-committed,
Concurrency
read-write

Read-committed,
Concurrency
read-only

Consistency,
read-write

Consistency,
read-only

Read-committed, Concurrency
read-write

some updates
may conflict

 conflict conflict

Read-committed, Concurrency
read-only

Consistency read-write conflict conflict conflict

Consistency read-only conflict conflict

6.7. Table Reservation
Table reservation allows you to specify the database tables and their corresponding access modes
at the beginning of the transaction. When the transaction is started, the engine tries to obtain the
requested locks for the specified tables and proceeds only when all of them were successfully
obtained. Such behavior allows to create a deadlock-free execution history[3].

The table reservation is specified via a TPB and includes the table to lock, the lock mode (read or
write) and lock type (shared, protected and exclusive).

Example of using table reservation facility in Firebird

FirebirdConnection connection = ...
TransactionParameterBuffer tpb =
 connection.createTransactionParameterBuffer(); ①

tpb.addArgument(TpbItems.isc_tpb_consistency); ②
tpb.addArgument(TpbItems.isc_tpb_write);
tpb.addArgument(TpbItems.isc_tpb_nowait);

tpb.addArgument(TpbItems.isc_tpb_lock_write,
 "TEST_LOCK");
tpb.addArgument(TpbItems.isc_tpb_protected);

connection.setTransactionParameters(tpb); ③

// next transaction will lock TEST_LOCK table for writing
// in protected mode

This shows an example of reserving the TEST_LOCK table for writing in a protected mode. The code

Chapter 6. Using transactions

68

does the following:

① Create a new instance of TransactionParameterBuffer class.

② Populate the TPB. The first three statements were described in "Transaction Parameter Buffer".
The fourth call specifies that the application wants to obtain a lock on the table TEST_LOCK for
writing. The fifth call specifies the type of the lock to obtain, in our case the protected lock.

③ Set the new TPB to be used for the next transaction.

The lock mode to the table specified in the TPB can be either

• TpbItems.isc_tpb_lock_read for read-only access to the table;

• or TpbItems.isc_tpb_lock_write for read-write access to the table.

The lock type can be either

• TpbItems.isc_tpb_shared for shared access to the table;

• or, TpbItems.isc_tpb_protected for protected access to the table;

The TpbItems.isc_tpb_exclusive mode was introduced in later versions of Firebird, however it
behaves like TpbItems.isc_tpb_protected mode for all read-write transactions.

The lock conflict table depends on the isolation level of the transactions and has the following
properties:

• isc_tpb_lock_write mode always conflicts with another isc_tpb_lock_write mode regardless of
the lock type and transaction isolation mode;

• isc_tpb_lock_write always conflicts with another isc_tpb_lock_read mode if both transactions
have consistency isolation, but has no conflict with shared-read locks if the other transaction
has either concurrency or read_committed isolation level;

• isc_tpb_lock_read mode never conflicts with isc_tpb_lock_read mode.

[1] Additionally, before the InterBase was open-sourced, this allowed application developers to create multi-threaded application
without need to purchase additional user licenses.

[2] Other cases, e.g. closing the statement object or the connection object will still ensure that the result set object is closed. If you
need result sets that can be "detached" from the statement object that created them, please check the javax.sql.RowSet
implementations.

[3] This approach follows the two-phase locking protocol, where all locks are acquired on the beginning of the transaction and are
released only when transaction is finished.

Chapter 6. Using transactions

69

Chapter 6. Using transactions

70

Chapter 7. Working with Services
In addition to normal database connections, Firebird features server-wide connections. These are
used to perform various administrative tasks in Firebird, e.g. database backup, maintenance,
statistics. The set of API calls to perform such tasks are known under the name “Services API”.
Additionally, client applications can use the Services API to get some limited information about the
server environment and configuration.

The actual execution of the Services API calls can be viewed as a tasks triggered from the client
application to be executed on server. The parameters passed in the calls are internally used to
construct the arguments similar to the ones that are passed to command-line tools. Later these
arguments are passed into the entry routines of the gbak, gfix, gsec or gstat utility. The output of the
utility, which in normal case is printed to standard out, is in this case transmitted over the network
to the client application.

Jaybird attempts to hide the complexity of the original API by providing a set of interfaces and their
implementations to perform the administrative tasks regardless of the usage mode (i.e. remote
server and embedded engine, wire protocol and access via native client library).

This chapter describes the Java API for the administrative tasks. All classes and interfaces described
below are defined in the org.firebirdsql.management package. Each management class works as a
standalone object and does not require an open connection to the server.

7.1. ServiceManager
The ServiceManager interface and the FBServiceManager class are defined as the common
superclasses providing setters and getters for common properties as well as some common
routines. The following properties can be specified:

Name Type Description

host
serverName

String Name or the IP address of the host to which we
make the Service API request. Required.

port
portNumber

int Port to which we make the request, 3050 by
default.


Since: Jaybird 5 serverName and portNumber are replacements for host and port,
which have been deprecated for removal in Jaybird 6.

database String Path to the database. The meaning of the
property depends on the service being invoked
and will be described in each of chapters below.

user String Name of the user on behalf of which all Service
API calls will be executed. Required.

password String Password corresponding to the specified user.
Required.

roleName String Role name. Optional.

Chapter 7. Working with Services

71

Name Type Description

expectedDb String Since: Jaybird 5 With Firebird 3.0 and higher,
this is used to find the non-default security
database to use when authenticating. Value is a
database path or alias the user can connect to.
Optional.

authPlugins String Comma-separated list of authentication plugins
to use (ignored for Firebird 2.5 or earlier). Use
null (the default) to use Jaybird defaults.

processId int Since: Jaybird 5 Process id to report to the
server.

processName String Since: Jaybird 5 Process name to report to the
server.

socketBufferSize int Since: Jaybird 5 Socket buffer size in bytes

soTimeout int Since: Jaybird 5 Socket blocking read timeout in
milliseconds (0 is OS default timeout)

connectTimeout int Since: Jaybird 5 Socket connect timeout in
milliseconds (0 is OS default timeout)

wireCrypt String or WireCrypt Wire encryption level (DISABLED, ENABLED,
REQUIRED, DEFAULT). In Jaybird 3.0.4+ and Jaybird
4, the property is type WireCrypt. In Jaybird 5,
the property is type String.

wireCryptAsEnum WireCrypt Since: Jaybird 5 Alternative to WireCrypt to use
WireCrypt enum.

dbCryptConfig String Database encryption config. See Database
encryption support for details.

wireCompression boolean Enable wire compression (requires Firebird 3.0
or higher). Default is false.

logger java.io.OutputStream Stream into which the output of the remote
service will be written to. Optional.

The last parameter requires some explanation. The calls to all Services API routines are
asynchronous. The client application can start the call, but there are no other means to find out
whether execution of the service call is finished or not except reading the output of the service
call — EOF in this case means that execution is finished.

The FBServiceManager converts the asynchronous calls into a synchronous call by constantly polling
the service output stream. If the logger property is specified the received data is copied into the
specified OutputStream, otherwise it is simply ignored and the EOF-marker is being watched.

This behavior can be changed by overriding the appropriate method in the FBServiceManager class
and/or subclasses. The only requirement is to detach from the service manager when it is no longer
needed.

Chapter 7. Working with Services

72

7.2. Backup and restore
Jaybird supports gbak, gbak streaming, and nbackup backup and restore.

7.2.1. Gbak backup and restore

The gbak backup and restore routines are defined in the BackupManager interface and are
implemented in the FBBackupManager class. This class provides server-side gbak backups. For details
on gbak itself, consult the Firebird Backup & Restore Utility [https://firebirdsqlsbak.html]
documentation.

In addition to the setters and getters described in the previous section, the following methods are
used to specify the backup and restore paths and properties:

Name Type Description

database String For a backup operation, it specifies the path or alias of
the database to back up.

For a restore operation, it specifies the path to the
database into which the backup file will be restored. In
case when multi-file database should be created, use
the addRestorePath(String, int) method instead.

backupPath String Path to the backup file. For a backup operation,
specifies the path and the file name of the newly
created backup file. If multi-file backup files are to be
created, use the addBackupPath(String, int) method
instead. For a restore operation, it specifies the path to
the single backup file. If a database should be restored
from a multi-file backup, use the addBackupPath(String)
method instead.

restorePageBufferCount int Number of pages that will be cached of this particular
database. Should be used only for restore operation. If
not set, the page cache size recorded in the backup is
used.

restorePageSize int Size of the database page. Should be used only for
restore operation. Valid values depend on the Firebird
version, but should be one of the 1024, 2048, 4096, 8192,
16384 or 32768. If not set, the page size recorded in the
backup is used.

restoreReadOnly boolean Set to true if the database should be restored in read-
only mode.

Chapter 7. Working with Services

73

https://firebirdsqlsbak.html

Name Type Description

restoreReplace boolean Set to true if restore should replace the existing
database with the one from backup.



It is easy to drop an existing database
if the backup can’t be restored, as the
existing database is first deleted and
only after that the restore process
starts. To avoid such situation it is
recommended to restore a database
into some dummy file first and then
use file system commands to replace
the existing database with the newly
created one.

verbose boolean Be verbose when writing to the log.

The service called on the server will produce lots of
output that will be written to the output stream
specified in logger property.

In addition to the properties, the following methods are used to configure the paths to back up and
database files when multi-file back up or restore operations are used.

Method Description

addBackupPath(String) Add a path to a backup file from a multi-file backup.
Should be used for restore operation only.

addBackupPath(String, int) Add a path to the multi-file backup. The second
parameter specifies the maximum size of the particular
file in bytes. Should be used for backup operation only.

addRestorePath(String, int) Add a path for the multi-file database. The second
parameter specifies the maximum size of the database
file in pages (in other words, the maximum size in bytes
can be obtained by multiplying this value by
restorePageSize parameter)

clearBackupPaths() Clear all the specified backup paths. This method also
clears the path specified in backupPath property.

clearRestorePaths() Clear all the specified restore paths. This method also
clears the path specified in the database property.



All paths specified are paths specifications on the remote server. This has the
following implications:

a. it is not possible to back up to the local or network drive unless it is mounted
on the remote server;

Chapter 7. Working with Services

74

b. it is not possible to restore from the local or network drive unless it is mounted
on the remote server.

The FBStreamingBackupManager can be used to perform remote backup and restore,
see Gbak streaming backup and restore.

After specifying all the needed properties, the application developer can use backupDatabase(),
backupMetadata() and restoreDatabase() methods to perform the backup and restore tasks. These
methods will block until the operation is finished. If the logger property was set, the output of the
service will be written into the specified output stream, otherwise it will be ignored.[1]

Example of backup and restore process

// backup the database
BackupManager backupManager = new FBBackupManager();

backupManager.setServerName("localhost");
backupManager.setPortNumber(3050);
backupManager.setUser("SYSDBA");
backupManager.setPassword("masterkey");
backupManager.setLogger(System.out);
backupManager.setVerbose(true);

backupManager.setDatabase("C:/database/employee.fdb");
backupManager.setBackupPath("C:/database/employee.fbk");

backupManager.backupDatabase();
...
// and restore it back
BackupManager restoreManager = new FBBackupManager();

restoreManager.setServerName("localhost");
restoreManager.setPortNumber(3050);
restoreManager.setUser("SYSDBA");
restoreManager.setPassword("masterkey");
restoreManager.setLogger(System.out);
restoreManager.setVerbose(true);

restoreManager.setRestoreReplace(true); // attention!!!

restoreManager.setDatabase("C:/database/employee.fdb");
restoreManager.setBackupPath("C:/database/employee.fbk");

backupManager.restoreDatabase();

The methods backupDatabase(int) and restoreDatabase(int) provide a possibility to specify
additional backup and restore options that cannot be specified via the properties of this class. The
parameter value is bitwise combination of the following constants:

Chapter 7. Working with Services

75

Constant Description

BACKUP_CONVERT Backup external files as tables.

By default, external tables are not backed up, only
references to the external files with data are stored in
the backup file. When this option is used, the backup
will store the external table as if they were regular
tables. On restore the tables are created as regular
tables.

BACKUP_EXPAND No data compression.

The gbak utility uses RLE compression for the strings in
backup file. Using this option tells it to write strings in
their full length, possibly fully consisting of empty
characters, etc.

BACKUP_IGNORE_CHECKSUMS Ignore checksums.

The backup utility can’t back up a database with page
checksum errors. Such database is considered
corrupted and the completeness and correctness of the
backup cannot be guaranteed. However, in some cases
such errors can be ignored, e.g. when the index page is
corrupted. In such cases the data in the database are OK
and the error disappears when the database is restored
and index is recreated.

Use this option only when checksum errors are
detected and can’t be corrected without full
backup/restore cycle. Ensure that the restored database
contains correct data afterwards.

BACKUP_IGNORE_LIMBO Ignore in-limbo transactions.

The backup utility can’t back up a database with in-
limbo transactions. When such situation appears, the
backup has to wait until the decision about the outcome
of the in-limbo transaction. After a wait timeout, an
exception is thrown and backup is aborted. This option
allows to work around this situation — gbak looks for
the most recent committed version of the record and
writes it into the backup.

Chapter 7. Working with Services

76

Constant Description

BACKUP_METADATA_ONLY Backup metadata only.

When this option is specified, the backup utility creates
a backup of only the metadata information (e.g. table
an/or view structure, stored procedures, etc.), but no
data are backed up. This allows restoring a clean
database from the backup.

BACKUP_NO_GARBAGE_COLLECT Do not collect garbage during backup.

The backup process reads all records in the tables one
by one. When cooperative garbage collection is
enabled[2] the transaction that accesses the latest
version of the record is also responsible for marking
the previous versions as garbage. This process is time-
consuming and might be switched off when creating
backup, where the most recent version will be read.

Later, an operator can restore the database from the
backup. In databases with many back-versions of the
records, the backup-restore cycle can be faster than
traditional garbage collection.

BACKUP_NON_TRANSPORTABLE Use non-transportable backup format.

By default, gbak creates a so-called transportable
backup where it does not make difference whether it is
later restored on a big-endian or little-endian platform.
By using this option, a non-transportable format will be
used which only allows restoring the database on the
same architecture.

BACKUP_OLD_DESCRIPTIONS Save old style metadata descriptions.

Actually no real information exist for this option, by
default it is switched off.

RESTORE_DEACTIVATE_INDEX Deactivate indexes during restore.

By default, indexes are created at the beginning of the
restore process, and they are updated with each record
being restored from the backup file. For big tables, it is
more efficient first to store data in the database and to
update the index afterwards. When this option is
specified, the indexes will be restored in the inactive
state. The downside of this option is that the database
administrator is required to activate indexes
afterwards; it won’t happen automatically.

Chapter 7. Working with Services

77

Constant Description

RESTORE_NO_SHADOW Do not restore shadow database.

If the shadow database is configured, an absolute path
to the shadow is stored in the backup file. If such
backup file is restored on a different system where the
path does not exist (e.g. moving a database from
Windows to Linux or otherwise), the restore will fail.
Using this option allows to overcome such situations.

RESTORE_NO_VALIDITY Do not restore validity constraints.

This option is usually needed when the validity
constraints (e.g. NOT NULL constraints) were added after
the data were already in the database, but the database
contains records that do not satisfy such constraints[3].

When this option is specified, the validity constraints
won’t be restored. This allows to recover the data and
perform cleanup tasks. The application and/or database
administrators are responsible for restoring the validity
constrains afterwards.

RESTORE_ONE_AT_A_TIME Commit after completing restore of each table.

By default, all data is restored in one transaction. If for
some reason a complete restore is not possible, using
this option will allow to restore at least some of the
data.

RESTORE_USE_ALL_SPACE Do not reserve 20% on each page for the future
versions, useful for read-only databases.

Example of using these options:

Example of using extended options for restore

BackupManager restoreManager = new FBBackupManager();

restoreManager.setServerName("localhost");
restoreManager.setPortNumber(3050);
restoreManager.setUser("SYSDBA");
restoreManager.setPassword("masterkey");
restoreManager.setLogger(System.out);
restoreManager.setVerbose(true);

restoreManager.setRestoreReplace(true); // attention!!!

restoreManager.setDatabase("C:/database/employee.fdb");
restoreManager.setBackupPath("C:/database/employee.fbk");

Chapter 7. Working with Services

78

// restore database with no indexes,
// validity constraints and shadow database
backupManager.restoreDatabase(
 BackupManager.RESTORE_DEACTIVATE_INDEX |
 BackupManager.RESTORE_NO_VALIDITY |
 BackupManager.RESTORE_NO_SHADOW |
 BackupManager.RESTORE_ONE_AT_A_TIME);

7.2.2. Gbak streaming backup and restore

The FBStreamingBackupManager class is a sibling of FBBackupManager, providing streaming backup and
restore. Streaming backup and restore allows client-server backup and restore, by streaming the
backup from the server to the client — on backup, or from the client to the server — on restore.

The class implements interface BackupManager — just like FBBackupManager, but the methods to set
backup files (setBackupPath, addBackupPath) are not supported and throw an
IllegalArgumentException. Verbose backups are not supported.

In addition, the class defines the following methods:

Method Description

setBackupOutputStream(OutputStream) OutputStream to write the backup.

setRestoreInputStream(InputStream) InputStream to read the backup to restore.

setBackupBufferSize(int) Size in bytes of the local buffer to use during backup,
defaults to 30KB.

7.2.3. Nbackup

The NBackupManager interface and its implementation FBNbackupManager provides nbackup backup
and restore through the service API. This form of backup and restore is server-side, meaning that
all paths are on the Firebird server. For information about nbackup, consult the Firebird’s nbackup
tool [https://www.firebirdsql.org/file/documentation/html/en/firebirddocs/nbackup/firebird-nbackup.html]
documentation.

In addition to the setters and getters described in the previous section, the following methods are
used to specify the backup and restore paths and properties:

Name Type Description

database String For a backup operation, it specifies the path or alias of
the database to back up.

For a restore operation, it specifies the path to the
database into which the backup file will be restored.

Chapter 7. Working with Services

79

https://www.firebirdsql.org/file/documentation/html/en/firebirddocs/nbackup/firebird-nbackup.html
https://www.firebirdsql.org/file/documentation/html/en/firebirddocs/nbackup/firebird-nbackup.html

Name Type Description

backupFile String Path to the backup file. For a backup operation, it
specifies the path and the file name of the newly
created backup file on the server. For a restore
operation, it specifies the path to the single backup file.
If a database should be restored from a multi-file
backup, use the addBackupFile(String) method for
additional files.

backupLevel int The level of backup to perform. Setting a level of 0
performs a full backup. A level of N with N > 1 will back
up all data pages modified since the last level N - 1
backup. Defaults to 0 if backupGuid has not been set.

backupGuid String Since: Jaybird 4.0.4 Sets the GUID of a previous backup
(requires Firebird 4.0 or higher). This will back up all
data pages modified since the backup identified by the
GUID. The GUID is enclosed in braces ({ and }).

noDbTriggers boolean Disable database triggers for nbackup operations that
connect to the database.

inPlaceRestore boolean Since: Jaybird 4.0.4 Enables in-place restore (requires
Firebird 4.0 or higher). This allows incremental restore,
for example for a read-only replica, or a hot standby.

preserveSequence boolean Since: Jaybird 5 Enables preserve sequence for restore
or fixup (requires Firebird 4.0 or higher). This
preserves the existing GUID and replication sequence
of the original database.

cleanHistory boolean Since: Jaybird 4.0.7 Enable the clean history option
(requires Firebird 4.0.3 or higher). One of the
properties keepRows or keepDays must also be set. When
enabled, after performing a backup, old records from
the RDB$BACKUP_HISTORY will be removed.

keepDays int Since: Jaybird 4.0.7 Number of days to keep backup
history when cleanHistory is enabled.

keepRows int Since: Jaybird 4.0.7 Number of rows (including the new
backup!) to keep backup history when cleanHistory is
enabled.

In addition to the properties, the following methods are used to configure the paths to backup-files
when multi-file restore operations are used.

Chapter 7. Working with Services

80

Method Description

addBackupFile(String) Add a path to a backup file from a multi-file backup. In
practice, setBackupFile does the same as addBackupFile.
For backup, only the first file set or added is used. For
restore, the files must be in the correct order to form
the chain of the level 0 backup up to the highest level or
last GUID-based backup to restore.

clearBackupFiles() Clears the list of backup files.

backupDatabase() Perform backup.

restoreDatabase() Perform restore.

fixupDatabase() Since: Jaybird 5 Perform the nbackup fixup operation.
A fixup will switch a locked database back to “normal”
state without merging the delta, so this is a potentially
destructive action. The normal use-case of this option is
to unlock a copy of a database file where the source
database file was locked with nbackup -L or ALTER
DATABASE BEGIN BACKUP. Enable preserveSequence to
preserve the original database GUID and replication
sequence.

After specifying all the needed properties, the application developer can use the backupDatabase(),
restoreDatabase() and fixupDatabase methods to perform the backup and restore tasks. These
methods will block until the operation is finished. No output is written to the logger.

Example of nbackup backup and restore process

NBackupManager backupManager = new FBNBackupManager();

backupManager.setServerName("localhost");
backupManager.setPortNumber(3050);
backupManager.setUser("SYSDBA");
backupManager.setPassword("masterkey");

// backup level 1 increment against a previously performed level 0
backupManager.setDatabase("/path/to/database.fdb");
backupManager.setBackupFile("/path/to/backup_lvl_1.nbk");
backupManager.setBackupLevel(1);
backupManager.backupDatabase();

// restore level 0 and level 1 in new db restored.fdb
backupManager.clearBackupFiles();
backupManager.setDatabase("/path/to/restored.fdb");
backupManager.addBackupFile("/path/to/backup_lvl_0.nbk");
backupManager.addBackupFile("/path/to/backup_lvl_1.nbk");
backupManager.restoreDatabase();

Chapter 7. Working with Services

81

7.3. User management


Starting with Firebird 3.0, user management through the Services API has been
deprecated. You should use the SQL DDL statements for user management instead.

The next service available is the user management. The routines are defined in the UserManager
interface and are implemented in the FBUserManager class. Additionally, there is an User interface
providing getters and setters for properties of a user account on the server and corresponding
implementation in the FBUser class.[4] The available properties of the FBUser class are:

Name Type Description

userName String Unique name of the user on the Firebird server.
Required. Maximum length is 31 byte.

password String Corresponding password. Getter return value only if
the password had been set

firstName String First name of the user. Optional.

middleName String Middle name of the user. Optional.

lastName String Last name of the user. Optional.

userId int ID of the user on Unix. Optional.

groupId int ID of the group on Unix. Optional.

The management class, FBUserManager has the following methods to manipulate the user accounts
on the server:

Method Description

getUsers():Map Method delivers a map containing usernames as keys
and instances of FBUser class as values containing all
users that are registered on the server. The instances of
FBUser class do not contain passwords, the
corresponding property is null.

addUser(User) Register the user account on the server.

updateUser(User) Update the user account on the server.

deleteUser(User) Delete the user account on the server.

An example of using the FBUserManager class:

Example of FBUserManager class usage

UserManager userManager = new FBUserManager();

userManager.setServerName("localhost");
userManager.setPortNumber(3050);
userManager.setUser("SYSDBA");
userManager.setPassword("masterkey");

Chapter 7. Working with Services

82

User user = new FBUser();
user.setUserName("TESTUSER123");
user.setPassword("test123");
user.setFirstName("John");
user.setMiddleName("W.");
user.setLastName("Doe");

userManager.add(user);

7.4. Database maintenance
Database maintenance is something that everybody would prefer to avoid, and, contrary to the
backup/restore and user management procedures, there is little automation that can be done here.
Usually the maintenance tasks are performed on the server by the database administrator, but
some routines are needed to perform the automated database upgrade or perform periodic checks
of the database validity.

This chapter describes the methods declared in the MaintenanceManager interface and its
implementation, the FBMaintenanceManager class.

7.4.1. Database shutdown and restart

One of the most often used maintenance operations is database shutdown and/or bringing it back
online. When a database was shutdown, only the user that initiated the shutdown, either SYSDBA
or the database owner, can connect to the database and perform other tasks, e.g. metadata
modification or database validation and repair.

The database shutdown is performed by shutdownDatabase(int, int) method. The first parameter is
the shutdown mode, the second — the maximum allowed time for operation.

There are three shutdown modes:

Shutdown mode Description

SHUTDOWN_ATTACH The shutdown process is initiated, and it is not possible to obtain
a new connection to the database, but the currently open
connections are fully functional.

When, after the maximum allowed time for operation, there are
still open connections to the database, the shutdown process is
aborted.

Chapter 7. Working with Services

83

Shutdown mode Description

SHUTDOWN_TRANSACTIONAL The shutdown process is started, and it is not possible to start
new transactions or open new connections to the database. The
transactions that were running at the time of shutdown initiation
are fully functional.

When, after the maximum allowed time for operation, there are
still running transactions, the shutdown process is aborted.

If no running transactions are found, the currently open
connections are allowed to disconnect.

SHUTDOWN_FORCE The shutdown process is started and will be completed before or
when the maximum allowed time for operation is reached. New
connections and transactions are not prohibited during the wait.

After the timeout, any running transaction won’t be able to
commit.

After database shutdown, the owner of the database or SYSDBA can connect to it and perform
maintenance tasks, e.g. migration to the new data model[5], validation of the database, changing the
database file configuration.

To bring the database back online use the bringDatabaseOnline() method.

7.4.2. Shadow configuration

A database shadow is an in-sync copy of the database that is usually stored on a different hard disk,
possibly on a remote computer[6], which can be used as a primary database if the main database
server crashes. Shadows can be defined using CREATE SHADOW SQL command and are characterized
by a mode parameter:

• in the AUTO mode database continues operating even if shadow becomes unavailable (disk or
file system failure, remote node is not accessible, etc.)

• in the MANUAL mode all database operations are halted until the problem is fixed. Usually it
means that DBA has to kill the unavailable shadow and define a new one.

The MaintenanceManager provides a killUnavailableShadows() method to kill the unavailable
shadows. This is equivalent to the gfix -kill command.

Additionally, if the main database becomes unavailable, the DBA can decide to switch to the shadow
database. In this case the shadow must be activated before use. To activate the shadow use the
activateShadowFile() method. Please note, that in this case the database property of the
MaintenanceManager must point to the shadow file which must be located on the local file system of
the server to which the management class is connected.

Chapter 7. Working with Services

84

7.4.3. Database validation and repair

The Firebird server does its best to keep the database file in a consistent form. This is achieved by a
special algorithm called careful writes, which guarantees that the server writes data on disk in such
a manner that despite events like a server crash, the database file always remains in a consistent
state. Unfortunately, it is still possible that under certain conditions, e.g. crash of the file system or
hardware failure, the database file might become corrupted. Firebird server can detect such cases
including

• Orphan pages. These are database pages that were allocated for subsequent write, but due to a
crash were not used. Such pages have to be marked as unused to return storage space back to
the application;

• Corrupted pages. These are database pages that were corrupted/damaged by operating system
or hardware failures.

The MaintenanceManager class provides a validateDatabase() method to perform simple health check
of the database, and releasing the orphan pages if needed. It also reports presence of the checksum
errors. The output of the routine is written to the output stream configured in the logger property.

The validateDatabase(int) method can be used to customize the validation process:

Validation mode Description

VALIDATE_READ_ONLY Perform read-only validation. In this case the database file won’t
be repaired, only the presence of database file errors will be
reported.

Can be used for a periodical health-check of the database.

VALIDATE_FULL Do a full check on record and pages structures, releasing
unassigned record fragments.

VALIDATE_IGNORE_CHECKSUM Ignore checksums during repair operations.

The checksum error means that the database page was
overwritten in a random order and the data stored on it are
corrupted. When this option is specified, the validation process
will succeed even if checksum errors are present.

To repair the corrupted database use the markCorruptRecords() method which marks the corrupted
records as unavailable. This method is equivalent to gfix -mend command. After this operation
database can be backed up and restored to a different place.


The presence of the checksum errors and subsequent use of
markCorruptedRecords() method will mark all corrupted data as unused space. You
have to perform a careful check after backup/restore cycle to assess the damage.

7.4.4. Limbo transactions

Limbo transactions are transactions that were prepared for commit but were never committed.

Chapter 7. Working with Services

85

This can happen when, for example, the database was accessed by JTA-enabled applications from
Java[7]. The in-limbo transactions affect the normal database operation, since the records that were
modified in that transactions are not available, Firebird does not know whether the new version
will be committed or rolled back and blocks access to them. Also, in-limbo transactions prevent
garbage collection, since the garbage collector does not know whether it can discard the record
versions of the in-limbo transaction.

Jaybird contains functionality to allow the JTA-enabled transaction coordinator to recover the in-
limbo transactions and either commit them or perform a rollback. For the cases when this is not
possible, MaintenanceManager provides the following methods to perform this in interactive mode:

Method Description

listLimboTransactions() Method lists IDs of all in-limbo transactions to the output stream
specified in logger property.

The application has to either parse the output to commit or
rollback the transactions in some automated fashion, or it should
present the output to the user and let him/her make a decision.
Alternatively, use one of the following two methods

limboTransactionsAsList() Returns a List<Long> of the IDs of all in-limbo transactions

getLimboTransactions() Returns an array of long with the IDs of all in-limbo transactions

commitTransaction(long) Commit the transaction with the specified ID.

rollbackTransaction(long) Rollback the transaction with the specified ID.

7.4.5. Sweeping the database

The in-limbo transactions are not the only kind of transactions that prevent garbage collection.
Another type are transactions are those that were finished by “rollback” and the changes made in
such transactions were not automatically undone by the internal savepoint mechanism, e.g. when
there were a lot of changes made in the transaction (e.g. 10,000 records and more), or for
transactions started with “NO AUTO UNDO”/isc_tpb_no_auto_undo. Such transactions are marked as
"rollback" transactions on the Transaction Inventory Page and this prevents advancing the so-called
Oldest Interesting Transaction (OIT), the ID of the oldest transaction which created record versions
that are relevant to any of the currently running transactions. On each access to the records,
Firebird has to check all the record versions between the current transaction and the OIT, which
leads to performance degradation on large databases. To solve the issue, Firebird periodically starts
a database sweeping process, that traverses all database records, removes the changes made by the
rolled back transactions and moves forward the OIT.[8]

The sweep process is controlled by a threshold parameter, a difference between the Next
Transaction and OIT, by default it is set to 20,000. While this value is OK for the average database, a
DBA can decide to increase or decrease the number to fit the database usage scenario. Alternatively,
a DBA can trigger the sweep process manually, regardless of the current difference between Next
Transaction and OIT.

The MaintenanceManager provides following methods to help with database sweeping:

Chapter 7. Working with Services

86

Method Description

setSweepThreshold(int) Set the threshold between Next Transaction and OIT that will trigger the
automatic sweep process. Default value is 20,000.

sweepDatabase() Perform the sweep regardless of the current difference between Next
Transaction and OIT.

7.4.6. Other database properties

There are a few other properties of the database that can be set via MaintenanceManager:

Method Description

setDatabaseAccessMode(int) Change the access mode of the database. Possible values are:

• ACCESS_MODE_READ_ONLY to make database read-only;

• ACCESS_MODE_READ_WRITE to allow writes into the database.

Please note, only read-only databases can be placed on read-only
media, read-write databases will need to be able to write even if
only accessed with read-only transactions.

setDatabaseDialect(int) Change the database SQL dialect. The allowed values can be
either 1 or 3.

setDefaultCacheBuffer(int) Change the number of database pages to cache.

This setting applies to this specific database, overriding the
system-wide configuration.

setForcedWrites(boolean) Change the forced writes setting for the database.

When forced writes are switched off, the database engine does
not enforce flushing pending changes to disk, and they are kept
in OS cache. If the same page is changed again later, the write
happens in memory, which in many cases increases the
performance. However, in case of OS or hardware crashes, the
database might get corrupted.

Chapter 7. Working with Services

87

Method Description

setPageFill(int) Set the page fill factor.

Firebird leaves 20% of free space on each database page for
future record versions. It is possible to tell Firebird not to reserve
the space, this makes sense for read-only databases, since more
data fit the page, which increases performance.

Possible values are:

• PAGE_FILL_FULL — do not reserve additional space for future
versions;

• PAGE_FILL_RESERVE — reserve the free space for future record
versions.

7.5. Table statistics of a connection (experimental)
Since: Jaybird 5

A new class was added in Jaybird 5, org.firebirdsql.management.FBTableStatisticsManager, which
can be used to retrieve the table statistics of a connection.

Create an instance with FBTableStatisticsManager#of(java.sql.Connection) — the connection must
unwrap to a FirebirdConnection — and retrieve a snapshot of the statistics with
FBTableStatisticsManager#getTableStatistics().


This is an experimental feature. Its API may change in point releases, or it may be
removed or replaced entirely in a future major release.

7.6. Database statistics
And last but not least is the StatisticsManager interface and corresponding implementation in the
FBStatisticsManager class, which allow to obtain statistical information for the database, like page
size, values of OIT and Next transactions, database dialect, database page allocation and its
distribution.

The following methods provide the functionality equivalent to the gstat command line tool, the
output of the commands is written to the output stream specified in the logger property. It is the
responsibility of the application to correctly parse the text output if needed.

Method Description

getDatabaseStatistics() Get complete statistics about the database.

Chapter 7. Working with Services

88

Method Description

getDatabaseStatistics(int) Get the statistical information for the specified options.

Possible values are (bit mask, can be combined):

• DATA_TABLE_STATISTICS

• SYSTEM_TABLE_STATISTICS

• INDEX_STATISTICS

• RECORD_VERSION_STATISTICS

getHeaderPage() Get information from the header page (e.g. page size, OIT, OAT
and Next transaction values, etc.)

getTableStatistics(String[]) Get statistic information for the specified tables.

This method allows to limit the reported statistical information to
a single or couple of the tables, not for the whole database.

[1] The output of the service is always transferred over the network regardless whether the logger property is set or not. In
addition to providing a possibility to the user to track the service progress, it acts also as a signal of operation completion — in this
case the Java code will receive an EOF marker.

[2] Cooperative garbage collection can be switched off in SuperServer architecture with configuration option “GCPolicy”. It can’t be
switched off in ClassicServer and SuperClassic architectures.

[3] All versions of Firebird upto 2.5 allow to define validity constraints despite the table(s) contain data that do not satisfy them.
Only the new records will be validated, and it is responsibility of the database administrator to ensure the validity of existing ones.

[4] The class implementation is a simple bean publishing the properties via getters and setters. You can replace it with any other
implementation of the User interface.

[5] Until Firebird 2.0 adding a foreign key constraint required exclusive access to the database.

[6] Currently possible only on Unix platforms by using NFS shares.

[7] Another reason for limbo transactions are multi-database transactions which can be initiated via the native Firebird API.
However, since Jaybird does not provide methods to initiate them, we do not consider them in this manual.

[8] For more information please read article by Ann Harrison “Firebird for the Database Expert: Episode 4 - OAT, OIT, & Sweep”,
available, for example, at https://www.ibphoenix.com/resources/documents/design/doc_21

Chapter 7. Working with Services

89

https://www.ibphoenix.com/resources/documents/design/doc_21

Chapter 7. Working with Services

90

Chapter 8. Working with Events
Firebird supports events. Events are a feature that provides asynchronous notification to the
connected applications about events triggered by the database or other applications. Instead of
requiring applications to reread the database tables to check for the changes, events make it
possible to avoid that: triggers in the database can post an event in case of a change. And even
more, the event can be so specific that an application would need to reread only a limited set of
records, possibly only one.

This chapter describes the event mechanism in Firebird and the common usage scenarios.

8.1. Database events
An event is a message generated in a trigger, stored procedure or execute block that is delivered to
subscribed applications. The event is characterized only by a name which is used when the event is
posted, therefore two different events must have two different names. The applications that
subscribe for events are required to specify the event names of interest, no wildcards are allowed;
and applications either provide a callback function that will be invoked in case of event or are
required to poll for the posted events periodically.

Events are delivered to the application only on (after) commit of the transaction that generated the
event. Firebird does not provide any guarantees about the time of event delivery, it depends on the
load of the Firebird engine, application load, network delays between application and the database
system. The database engine will continue operating even if no application subscribes to events or
when the subscribed application crashed in the meantime.

It can also happen that multiple transactions will be committed before the events are delivered to
the client system. But even in such case the callback function will be invoked only once, and only
the event name and the count of the events will be passed as parameters. The same applies to
periodical polling, the application will receive event names and counts of the events since last
polling.

Internally, Firebird can be thought to store the subscription information in a table where columns
contain event names, rows correspond to the subscribed applications and the cells contain the
count of the particular event for a particular application. When an event is posted in trigger or
stored procedure, Firebird checks the subscription information and increases the event count for
the subscribed applications. Another thread checks the table periodically and notifies the
application about all new events relevant to the particular application. Such mechanism allows
Firebird to keep the event notification table very small[1] and to reduce the number of messages
sent to the application.



It is not possible to pass parameters with the event, e.g. an ID of the modified
records. It is also not possible to encode such information in the event names,
wildcards are not supported. For such cases, applications should maintain a
change tracking table where the IDs of the modified records are stored and the
event mechanism is used to tell the application that new records were added to the
table.

Chapter 8. Working with Events

91

8.2. Posting events
Events are posted from PSQL code (trigger, stored procedure, execute block, function) using the
POST_EVENT command. It is possible to create a stored procedure with the sole purpose of posting
events:

Example of posting events from PSQL code

CREATE PROCEDURE sp_post_event(event_name VARCHAR(72))
AS BEGIN
 POST_EVENT :event_name;
END

The EXECUTE BLOCK statement can be used to execute PSQL statements within DSQL code:

Using EXECUTE BLOCK to post events

try (Statement stmt = connection.createStatement()) {
 stmt.execute(
 "EXECUTE BLOCK AS BEGIN POST_EVENT 'some_evt'; END");
} finally {
 stmt.close();
}

8.3. Subscribing to events
The design of the classes and interfaces in the org.firebirdsql.event package is similar to the
Services API support; there is a central manager-class that establishes a database connection and
provides service methods to work with the events, a callback interface that applications must
implement to use the asynchronous event notification and an interface representing a database
event with two properties, event name and occurrence count.

Applications have to configure the following properties before starting use of the implementation
EventManager interface:

Name Type Description

host
serverName

String Name or the IP address of the host to which we
subscribe for events. Required.

port
portNumber

int Port to which we connect to, 3050 by default.

database
databaseName

String Path to the database. The path is specified for the
remote host but must be absolute. Required.


Since: Jaybird 5 serverName, portNumber and databaseName are replacements for
host, port and databaseName, which have been deprecated for removal in Jaybird
6.

Chapter 8. Working with Events

92

Name Type Description

user String Name of the user on behalf of which we connect to the
database. Required.

password String Password corresponding to the specified user. Required.

roleName String Role name. Optional.

expectedDb String Since: Jaybird 5 With Firebird 3.0 and higher, this is
used to find the non-default security database to use
when authenticating. Value is a database path or alias
the user can connect to. Optional.

authPlugins String Comma-separated list of authentication plugins to use
(ignored for Firebird 2.5 or earlier). Use null (the
default) to use Jaybird defaults.

processId int Since: Jaybird 5 Process id to report to the server.

processName String Since: Jaybird 5 Process name to report to the server.

socketBuffer
Size

int Since: Jaybird 5 Socket buffer size in bytes

soTimeout int Since: Jaybird 5 Socket blocking read timeout in
milliseconds (0 is OS default timeout)

connectTimeo
ut

int Since: Jaybird 5 Socket connect timeout in milliseconds
(0 is OS default timeout)

wireCrypt String or WireCrypt Wire encryption level (DISABLED, ENABLED, REQUIRED,
DEFAULT). In Jaybird 3.0.4+ and Jaybird 4, the property is
type WireCrypt. In Jaybird 5, the property is type String.

wireCryptAsE
num

WireCrypt Since: Jaybird 5 Alternative to WireCrypt to use
WireCrypt enum.

dbCryptConfi
g

String Database encryption config. See Database encryption
support for details.

wireCompress
ion

boolean Enable wire compression (requires Firebird 3.0 or
higher). Default is false.

This property only affects the primary connection, not
the event channel (secondary connection).

After configuring these properties, the application has to invoke the connect() method to establish a
physical connection to the database. At this point the EventManager is ready to receive event
notifications.

Now the application developer has two choices: use asynchronous event notification or use
methods that will block until an event is delivered or a timeout occurs.

8.3.1. Asynchronous event notification

The asynchronous event notification uses a separate daemon thread to wait for the event

Chapter 8. Working with Events

93

notifications and to deliver the events to the registered listeners. The listeners are added using the
addEventListener(String, EventListener) method, where the first parameter contains the name of
the event to register on and the second parameter, an instance of EventListener interface that will
be notified about occurrences of this event. It is allowed to use the same instance of EventListener
interface to listen on different events. The code below shows an example of using asynchronous
event notification.

Example of registering an event listener for asynchronous event notification

var eventManager = new FBEventManager();
eventManager.setServerName("localhost");
eventManager.setUser("SYSDBA");
eventManager.setPassword("masterkey");
eventManager.setDatabaseName("c:/database/employee.fdb");

eventManager.connect();

eventManager.addEventListener("test_event",
 event ->
 System.out.printf("Event [%s] occured %d time(s)%n",
 event.getEventName(), event.getEventCount()));

8.3.2. Using blocking methods

Alternatively, an application can use the synchronous methods, one that blocks until the named
event is received — the waitForEvent(String) method, or one that will block until the named event
is received or timeout specified in the second parameter occurs — the waitForEvent(String, int)
method. The following shows an example of using the blocking methods.

Example of blocking waiting for event with a specified timeout

EventManager eventManager = new FBEventManager();

eventManager.setServerName("localhost");
eventManager.setUser("SYSDBA");
eventManager.setPassword("masterkey");
eventManager.setDatabaseName("c:/database/employee.fdb");

eventManager.connect();

int eventCount =
 eventManager.waitForEvent("test_event", 10 * 1000);

System.out.println(
 "Received " + eventCount + " event(s) during 10 sec.");

[1] For example, the effective size for 100 applications subscribed for 100 different events is about 40k in memory.

Chapter 8. Working with Events

94

Reference Manual

95

96

Chapter 9. Connection reference

9.1. Authentication plugins
Since: Firebird 3.0

Firebird 3.0 introduced authentication plugins together with a new authentication model. By
default, Firebird 3.0 uses the authentication plugin Srp (Secure remote password). It also includes
plugins Legacy_Auth that supports the pre-Firebird-3 authentication mechanism, and — Since:
Firebird 3.0.4 — Srp256. Firebird 4.0 introduced the plugins Srp224, Srp384 and Srp512.

The original Srp plugin uses SHA-1, the new Srp-variants use SHA-224, SHA-256, SHA-384 and SHA-
512 respectively.[1]


Support for these plugins depends on support of these hash algorithms in the JVM.
For example, SHA-224 is not supported in Oracle Java 7 by default and may require
additional JCE libraries.

9.1.1. Default authentication plugins

Jaybird 5

The default plugins applied by Jaybird 5 are — in order — Srp256 and Srp. This applies only for the
pure Java protocol and only when connecting to Firebird 3.0 or higher. The native implementation
will use its own default or the value configured through its firebird.conf.

When connecting to Firebird 3.0 or higher, the pure Java protocol in Jaybird 4 and higher will no
longer try the Legacy_Auth plugin by default as it is an unsafe authentication mechanism. We
strongly suggest to use SRP users only, but if you really need to use legacy authentication, you can
specify connection property authPlugins=Legacy_Auth, see Configure authentication plugins for
details.

When connecting to Firebird 3.0 versions earlier than 3.0.4, or if Srp256 has been removed from the
AuthServer setting in Firebird, this might result in slightly slower authentication because more
roundtrips to the server are needed. After an attempt to use Srp256 fails, authentication continues
with Srp.

To avoid this, consider explicitly configuring the authentication plugins to use, see Configure
authentication plugins for details.

Firebird 2.5 and earlier will always use legacy authentication.

Jaybird 4

The default plugins applied by Jaybird 4 are — in order — Srp256 and Srp.

See section on Jaybird 5 for further details.

Chapter 9. Connection reference

97

Jaybird 3

Jaybird 3 will try — in order — Srp256, Srp and Legacy_Auth. It is not possible to specify a different
configuration in Jaybird 3.

Firebird 2.5 and earlier will always use legacy authentication.

9.1.2. Configure authentication plugins

The connection property authPlugins (alias auth_plugin_list) specifies the authentication plugins to
try when connecting. The value of this property is a comma-separated list with the plugin names.


The authPlugins values can be separated by comma, space, tab, or semicolon. We
recommend using comma as the separator. The semicolon should not be used in a
JDBC URL as there the semicolon is a separator between connection properties.

Unknown or unsupported plugins will be logged and skipped. When no known plugins are
specified, Jaybird will throw an exception with:

• For pure Java

Cannot authenticate. No known authentication plugins, requested plugins: [<plugin-names>]
[SQLState:28000, ISC error code:337248287]

• For native

Error occurred during login, please check server firebird.log for details [SQLState:08006, ISC error
code:335545106]

The authPlugins property only affects connecting to Firebird 3.0 or later. It will be ignored when
connecting to Firebird 2.5 or earlier. The setting will also be ignored for native connections when
using a fbclient library of version 2.5 or earlier.

Examples:

• JDBC URL to connect using Srp256 only:

jdbc:firebirdsql://localhost/employee?authPlugins=Srp256

• JDBC URL to connect using Legacy_Auth only (this is unsafe!)

jdbc:firebirdsql://localhost/employee?authPlugins=Legacy_Auth

• JDBC URL to try Legacy_Auth before Srp512 (this order is unsafe!)

jdbc:firebirdsql://localhost/employee?authPlugins=Legacy_Auth,Srp512

Chapter 9. Connection reference

98

The property is also supported by the data sources, service managers and event manager.

9.1.3. External authentication plugin support (experimental)

If you develop your own Firebird authentication plugin (or use a third-party authentication plugin),
it is possible — for pure Java only — to add your own authentication plugin by implementing the
interfaces

• org.firebirdsql.gds.ng.wire.auth.AuthenticationPluginSpi

• org.firebirdsql.gds.ng.wire.auth.AuthenticationPlugin

The SPI implementation needs to be listed in META-
INF/services/org.firebirdsql.gds.ng.wire.auth.AuthenticationPluginSpi in your jar.

This support is experimental and comes with a number of caveats:

• We haven’t tested this extensively (except for loading Jaybird’s own plugins internally)

• The authentication plugin (and provider) interfaces should be considered unstable; they may
change with point-releases (although we will try to avoid that)

• For now it will be necessary for the jar containing the authentication plugin to be loaded by the
same class loader as Jaybird itself

If you implement a custom authentication plugin and run into problems, contact us on the firebird-
java Google Group [https://groups.google.com/g/firebird-java].

If you use a native connection, check the Firebird documentation how to add third-party
authentication plugins to fbclient.

9.2. Wire encryption support
Since: Firebird 3.0

Firebird 3.0 and higher have support for encrypting the data sent over the network. This wire
encryption is configured using the connection property wireCrypt, with the following (case-
insensitive) values:

DEFAULT

default (value used when wireCrypt is not specified; you’d normally not specify DEFAULT
explicitly)

ENABLED

enable, but not require, wire encryption

REQUIRED

require wire encryption (only if Firebird version is 3.0 or higher)

DISABLED

disable wire encryption

Chapter 9. Connection reference

99

https://groups.google.com/g/firebird-java
https://groups.google.com/g/firebird-java

The default value acts as ENABLED for pure Java connections, for JNA (native) connections this wil
use the fbclient default (either Enabled or the configured value of WireCrypt from a firebird.conf
read by the native library).

Connection property wireCrypt=REQUIRED will not reject unencrypted connections when connecting
to Firebird 2.5 or lower. This behavior matches the Firebird 3.0 client library behavior. The value
will also be ignored when using native connections with a Firebird 2.5 client library.

Using wireCrypt=DISABLED when Firebird 3.0 or higher uses setting WireCrypt = Required (or vice
versa) will yield error "Incompatible wire encryption levels requested on client and server" (error:
isc_wirecrypt_incompatible / 335545064).

The same error is raised when connecting to Firebird 3.0 and higher with a legacy authentication
user with connection property wireCrypt=REQUIRED.

Alternative wire encryption plugins are currently not supported, although we made some
preparations to support this. If you want to develop such a plugin, contact us on the firebird-java
Google Group [https://groups.google.com/g/firebird-java], so we can work out the details of adding plugin
support.



The implementation comes with a number of caveats:

• we cannot guarantee that the session key cannot be obtained by someone with
access to your application or the machine hosting your application (although
that in itself would already imply a severe security breach)

• the ARC4 encryption — the default provided by Firebird — is considered to be a
weak (maybe even broken) cipher these days

• the encryption cipher uses ARCFOUR with a 160 bits key, this means that the
unlimited Cryptographic Jurisdiction Policy needs to be used (or at minimum a
custom policy that allows ARCFOUR with 160 bits keys). See also FAQ entry
Encryption key did not meet algorithm requirements of Symmetric/Arc4
(337248282) [https://www.firebirdsql.org/file/documentation/drivers_documentation/java/

faq.html#encryption-key-did-not-meet-algorithm-requirements-of-symmetricarc4-

337248282]

9.3. Wire compression
Since: Firebird 3.0

Jaybird supports zlib wire compression in the pure Java wire protocol. Compression can be enabled
using boolean connection property wireCompression.

The connection property only has effect for the pure Java wire protocol connections on Firebird 3.0
and higher, if the server has the zlib library. Native connections will follow the WireCompression
configuration in the firebird.conf read by the client library, if the zlib library is on the search path.

Compression is currently disabled by default. This may change in future versions of Jaybird to be
enabled by default.

Chapter 9. Connection reference

100

https://groups.google.com/g/firebird-java
https://groups.google.com/g/firebird-java
https://www.firebirdsql.org/file/documentation/drivers_documentation/java/faq.html#encryption-key-did-not-meet-algorithm-requirements-of-symmetricarc4-337248282
https://www.firebirdsql.org/file/documentation/drivers_documentation/java/faq.html#encryption-key-did-not-meet-algorithm-requirements-of-symmetricarc4-337248282

The wireCompression property is also available on data sources and the management classes in
org.firebirdsql.management.

9.4. Database encryption support
Since: Firebird 3.0

Jaybird 3.0.4 added support for Firebird 3.0 database encryption callbacks in the pure Java
implementation of the version 13 protocol.

The current implementation is simple and only supports replying with a static value from a
connection property. Be aware that a static value response for database encryption is not very
secure as it can easily lead to replay attacks or unintended key exposure.

Future versions of Jaybird may introduce plugin support for database encryption plugins that
require a more complex callback.

The static response value of the encryption callback can be set through the dbCryptConfig
connection property. Data sources and ServiceManager implementations have an equivalent
property with the same name. This property can be set as follows:

• Absent or empty value — empty response to callback (depending on the database encryption
plugin this may just work or yield an error later).

• Strings prefixed with base64: — rest of the string is decoded as base64 to bytes. The = padding
characters are optional, but when present they must be valid (that is: if you use padding, you
must use the right number of padding characters for the length).

• Since: Jaybird 5 Strings prefixed with base64url: — rest of the string is decoded as base64url to
bytes (using “Base 64 URL and Filename safe” alphabet). As base64:, the = padding characters
are optional

• Plain string value — string is encoded to bytes using UTF-8, and these bytes are used as the
response.

Because of the limitation of connection URL parsing, we strongly suggest to avoid plain string
values with & or ;. Likewise, avoid : so that we can support other prefixes similar to base64: and
base64url: in the future. If you need these characters, consider using a base64 encoded value
instead.

Jaybird 3.0.9 and higher expects keys and values in the JDBC URL to be URL encoded. When the
base64 encoded value contains +, it must be escaped as %2B in the JDBC URL, otherwise it is decoded
to a space and decoding will fail. Jaybird 5 introduced base64url, an alternative to base64, which
doesn’t use +, thus avoiding the need to escape.

For service operations, as implemented in the org.firebirdsql.management package, Firebird
requires the KeyHolderPlugin configuration to be globally defined in firebird.conf. Database-
specific configuration in databases.conf will be ignored for service operations. Be aware that some
service operations on encrypted databases are not supported by Firebird 3.0 (e.g. gstat equivalents
other than gstat -h or gstat -e).

Chapter 9. Connection reference

101



Other warnings and limitations

• Database encryption callback support is only available in the pure Java
implementation. Support for native and embedded connections may be added
in a future version.

• The database encryption callback does not require an encrypted connection, so
the key can be exchanged unencrypted if wire protocol encryption has been
disabled client-side or server-side, or if legacy authentication is used. Consider
setting connection property wireCrypt=REQUIRED to force encryption (caveat: see
the next point).

• Firebird may ask for the database encryption key before the connection has
been encrypted (for example if the encrypted database itself is used as the
security database).

• We cannot guarantee that the dbCryptConfig value cannot be obtained by
someone with access to your application or the machine hosting your
application (although that in itself would already imply a severe security
breach).

9.5. Default holdable result sets
This connection property enables a connection to create holdable result sets by default. This
propery can be used as a workaround for applications that expect a result to remain open after
commit, or have expectations regarding result sets in auto-commit mode that do not conform to the
JDBC specification.

Specifically, such applications open a result set and, while traversing it, execute other statements
using the same connection. According to the JDBC specification the result set has to be closed if
another statement is executed using the same connection in auto-commit mode. With the default
result set holdability, close on commit, doing this yields a SQLException with message "The result set
is closed".

The property is called:

• defaultResultSetHoldable as connection property with no value, empty value or true (aliases:
defaultHoldable and result_set_holdable);

• isc_dpb_result_set_holdable as a DPB member;

• FirebirdConnectionProperties interface methods isDefaultResultSetHoldable() and
setDefaultResultSetHoldable(boolean)



The price for using this feature is that each holdable result set will be fully cached
in memory. The memory occupied by this result set will be released when the
result is closed, or the statement that produced the result set is closed or re-
executed.

Chapter 9. Connection reference

102

9.6. Firebird auto commit mode (experimental)



This functionality is experimental, and will remain so unless Firebird changes how
its auto-commit mode works. Do not use this unless you really know what
you’re doing.

Incorrect use can result in excessive growth of the database due to increases in
back-version chains, which can also cause performance degradation. When used
with an isolation level other than READ COMMITTED, the connection will only see
changes committed at the time the initial transaction was started; the auto-commit
barrier will not make new committed changes visible.

This option is enabled by specifying the connection property useFirebirdAutocommit=true.

With this option, Jaybird will configure the transaction to use isc_tpb_autocommit with
autoCommit=true. This means that Firebird server will internally commit the transaction after each
statement completion. Jaybird itself will not commit until connection close (or switching to
autoCommit=false). The exception is if the statement was of type isc_info_sql_stmt_ddl, in that case
Jaybird will commit on statement success and rollback on statement failure (just like it does for all
statements in normal auto commit mode). The reason is that Firebird for some DDL commands only
executes at a real commit boundary and relying on the Firebird auto-commit is insufficient.

On statement completion (as specified in JDBC), result sets will still close unless they are holdable
over commit. The result set is only closed client side, which means that the cursor remains open
server side to prevent roundtrips. This may lead to additional resource usage server side unless
explicitly closed in the code. Note that any open blobs will be closed client- and server-side (until
this is improved with jaybird#442 [https://github.com/FirebirdSQL/jaybird/issues/442]).

A connection can be interrogated using FirebirdConnection.isUseFirebirdAutocommit() if it uses
isc_tpb_autocommit.

If you manually add isc_tpb_autocommit to the transaction parameter buffer and you enable this
option, the isc_tpb_autocommit will be removed from the TPB if autoCommit=false.

Artificial testing with repeated inserts (using a prepared statement) against a Firebird server on
localhost shows that this leads to a reduction of execution time of +/- 7%.

Support for this option is experimental, and should only be enabled if you 1) know what you’re
doing, and 2) really need this feature. Internally isc_tpb_autocommit uses commit_retaining, which
means that using this feature may increase the transaction gap with associated sweep and garbage
collection impact.

9.7. Process information
Firebird 2.1 introduced the MON$ATTACHMENTS table. This table includes the columns MON$REMOTE_PID
and MON$REMOTE_PROCESS which report the process id and process name of the connected process.

Jaybird 5 and earlier do not provide this information, except for the process ID of native
connections. This has two main reasons: until recently Java did not have a portable way of

Chapter 9. Connection reference

103

https://github.com/FirebirdSQL/jaybird/issues/442

retrieving the process id, and in most cases the process name is just “java” (or similar), which is not
very useful.

Since: Jaybird 6 Starting with Jaybird 6, pure Java connections will by default report the actual
process ID, just like native connections. No default process name is provided as in most cases the
process name is just “java” (or similar), which is not very useful. When a SecurityManager is
installed, the entire call-chain needs to have the RuntimePermission("manageProcess") to obtain the
process ID in pure Java connections. If this permission check fails, Jaybird will silently ignore it and
not set the isc_dpb_process_id based on the actual process ID.

Since Firebird 3.0, the MON$ATTACHMENTS table also includes the column MON$CLIENT_VERSION. Jaybird
will report its full version (e.g. Jaybird 3.0.5-JDK_1.8).

Since: Jaybird 6 The process name is returned from Connection.getClientInfo("ApplicationName"), if
the client info property ApplicationName has not been set explicitly with Connection.setClientInfo,
and/or if there is no property ApplicationName in the USER_SESSION context.


Do not use the process name and process id information for security decisions.
Treat it as informational only, as clients can report fake information.

Native connections will always report the actual process ID, if a fbclient of Firebird 2.1 or higher is
used. This cannot be overridden using the options below.

It is possible to specify the process name and process id in two ways:

9.7.1. System properties for process information

It is possible to specify the process information through Java system properties:

org.firebirdsql.jdbc.pid

Process id

org.firebirdsql.jdbc.processName

Process name

In Jaybird 5 and earlier, this is the preferred method because you only need to specify it once. For
Jaybird 6 and later, the preferred method is to not set any option and use the actual process ID.

9.7.2. Connection properties for process information

It is also possible to specify the process information through connection properties:

processId

Process id (alias: process_id)

This property is ignored on native connections, which will always report the actual process id.

processName

Process name (alias: process_name, ApplicationName, applicationName)

Chapter 9. Connection reference

104

Since Jaybird 5, these properties are exposed on data sources. In earlier versions, these properties
were not exposed on the data sources. To set on data sources in Jaybird 4 or earlier, use
setNonStandardProperty.

9.8. Data type bind support
Since: Firebird 4.0

Firebird 4.0 introduced the SET BIND statement and isc_dpb_set_bind DPB item. This allows you to
define data type conversion rules for compatibility or ease of processing data.

This feature is specifically necessary for using the WITH TIME ZONE types under Jaybird 3, or Jaybird 4
on Java 7. See also Defining time zone data type bind.

In Jaybird this is exposed as connection property dataTypeBind (alias set_bind). The value of this
connection property is a semicolon-separated list of data type bind definitions.

A data type bind definition is of the form <from-type> TO <to-type>. A definition is the same as the
second half of a SET BIND statement after the OF. See the Firebird documentation of SET BIND for
more information. Invalid values or impossible mappings will result in an error on connect.

When using the dataTypeBind connection property in a JDBC URL, the semicolons of the list need to
be encoded as %3B, as unescaped semicolons in the JDBC URL are an alternative to & as the separator
between properties.

For example:

JDBC url with dataTypeBind and encoded semicolon

String jdbcUrl = "jdbc:firebirdsql://localhost/database?charSet=utf-8"
 + "&dataTypeBind=decfloat to varchar%3Btimestamp with time zone to legacy"

When the property is set through a Properties object or a DataSource configuration, encoding the
semicolon is not necessary and will result in errors.

For example:

Properties object with dataTypeBind

Properties props = new Properties();
props.setProperty("dataTypeBind",
 "decfloat to varchar;timestamp with time zone to legacy"

Values set through this connection property will be the session default configuration, which means
that they are retained (or reverted to) when executing ALTER SESSION RESET.

9.9. Enabling unsupported protocol versions
Since: Jaybird 6

Chapter 9. Connection reference

105

Since Jaybird 6, the pure Java protocol implementation will no longer attempt to connect with
protocol versions of Firebird versions which are not supported. Since the minimum supported
Firebird version in Jaybird 6 is Firebird 3.0, this means that protocol versions 10, 11 and 12 are no
longer tried by default. Protocol versions higher than 18 (Firebird 5.0.0) will also not be attempted
(assuming a protocol implementation with that version number exists on the classpath).

As a workaround, the connection property enableProtocol can enable unsupported protocols,
assuming a suitable protocol implementation is available on the classpath.

This connection property can have the following values:

• A comma-separated list of additional protocol versions to try (e.g. "11,12"). The listed versions
are tried in addition to the supported protocol versions. Non-integer values or unknown
protocol versions are silently ignored.

It is possible to use the “masked” protocol version (e.g. "32780" for protocol version 12).
However, we recommend using the unmasked version (e.g. "12" for protocol version 12).

• "*" — enable all available protocol versions

• null or empty string ("") — default behaviour, only use supported protocols



Given these protocol versions and their Firebird version are not supported, there
is no guarantee that the driver will function correctly when an unsupported
protocol is enabled this way. Especially things like database metadata could use
features that are not supported by older Firebird versions. We recommend
upgrading your Firebird version, or downgrading to a Jaybird version which still
supports your Firebird version.

For maximum compatibility, it is recommended to either use "*", or to make sure
to include the maximum protocol version of your Firebird version.

Unsupported protocol versions may be removed in future releases of Jaybird.

Table 3. Firebird versions and protocol versions

Firebird version Maximum protocol

1.0 — 2.0 10

2.1 11

2.5 12

3.0 15[2][3]

4.0 16[4]

5.0 18

Chapter 9. Connection reference

106

9.10. Opt-in feature for package information in
DatabaseMetaData
Since: Jaybird 6
Since: Firebird 3.0

Firebird 3.0 added packages, which can contain stored procedures and functions. The JDBC API
does not provide a “standard” way of accessing information about packages, or the routines defined
in packages. Instead of adding additional Jaybird-specific metadata methods, we’ve added an “opt-
in” feature that provides access through normal metadata methods, using the “catalog” to report
packages.

This feature can be enabled by setting the connection property useCatalogAsPackage to true. When
this connection property is enabled, the DatabaseMetaData of that connection will have the following
changes in behaviour:

• getCatalogs() lists packages, with package names in TABLE_CAT.

• getFunctions, getFunctionColumns, getProcedures, and getProcedureColumns include information
on procedures or functions in packages

◦ Columns FUNCTION_CAT/PROCEDURE_CAT will report:

▪ For packaged procedures and functions — the package name

▪ For normal (non-package) procedures and functions — an empty string instead of null
(because of the following rule)

◦ If parameter catalog is "" (empty string), only normal stored procedures or stored functions
are reported.

◦ If parameter catalog is null, both packaged and normal stored procedures or stored
functions are reported.

◦ For other values of parameter catalog, these metadata methods will only return procedures,
functions, or their columns of the specified package (exact match, case-sensitive; not a LIKE
pattern)

◦ For normal (non-package) procedures and functions, the SPECIFIC_NAME column will be the
unquoted function or procedure name (same as when useCatalogAsPackage is not enabled),
and for packaged procedures and functions, it will be quoted-package-name + '.' + quoted-
routine-name (e.g. "SOME_PACKAGE"."SOME_FUNCTION")

• getCatalogSeparator() returns "." (string with period).

• getCatalogTerm() returns "PACKAGE".

• isCatalogAtStart() returns true.

• getMaxCatalogNameLength() returns 31 or 63 depending on the max identifier length of the
database.

• supportsCatalogsInDataManipulation() returns true (i.e. access selectable stored procedures and
functions from packages).

• supportsCatalogsInProcedureCalls() returns true.

Chapter 9. Connection reference

107

• The other supportsCatalogsIntype() methods continue to return false.

• Other metadata methods with a catalog parameter continue to ignore it, just like they do when
useCatalogAsPackage is disabled.

The useCatalogAsPackage connection property does not result in any other behaviour.

Keep in mind, that this is non-standard behaviour, and standard JDBC tools or libraries may not
work correctly when this property is enabled. This feature may be discontinued and removed in
the future if Jaybird needs to implement “real” catalogs (e.g. because Firebird started supporting
catalogs).

See also jdp-2023-08: Use Catalog as Package [https://github.com/FirebirdSQL/jaybird/blob/master/devdoc/jdp/

jdp-2023-09-use-catalog-as-package.adoc]

9.11. Client info properties
Client info properties allow you to set properties on a connection for informational purposes, or as
the JDBC API documentation says “used for accounting, diagnostics and debugging purposes only”[5].

9.11.1. Support in Jaybird 5 and earlier

Support for client info properties was introduced in Jaybird 2.2, storing properties in the
USER_SESSION context of RDB$GET/SET_CONTEXT. Support is quite limited, allowing you to:

• Set properties individually or collectively using a Properties object
(Connection#setClientInfo(String,String), Connection#setClientInfo(Properties))

• Clear properties individually (setting them to null) (Connection#setClientInfo(String,String)

• Get individual properties (Connection#getClientInfo(String))

Properties are always stored in USER_SESSION. Properties are retrieved from USER_TRANSACTION, falling
back to USER_SESSION if the property was not present in `USER_TRANSACTION.

Absent is support to:

• Get properties collectively (Connection#getClientInfo() always returns an empty Properties
object)

• Collectively clear properties by not including them in the Properties object passed to
Connection#setClientInfo(Properties)

• retrieving supported client property names from DatabaseMetaData#getClientInfoProperties()
(always returns an empty result set)

9.11.2. Support in Jaybird 6 and later

Since: Jaybird 6

In Jaybird 6, the client info properties support was rewritten, improving and extending support of
this feature.

Chapter 9. Connection reference

108

https://github.com/FirebirdSQL/jaybird/blob/master/devdoc/jdp/jdp-2023-09-use-catalog-as-package.adoc

The name of a client info property is classified in two types:

1. without context; get/set in USER_SESSION context of RDB$GET/SET_CONTEXT

2. with context, when the name ends in @USER_SESSION, @USER_TRANSACTION or @SYSTEM; get/set
without that suffix in the specified context. Properties with multiple contexts (e.g.
property@SYSTEM@USER_SESSION) are not allowed to prevent ambiguity. Everything else is a
property without context.

A property named <name>@USER_SESSION is handled identical to <name>. The “without context” name is
preferred and recommended for USER_SESSION properties, and Connection.getClientInfo() will use
the “without context” name as the key for USER_SESSION properties.

A property named <name>@USER_TRANSACTION is set and get as <name> in context USER_TRANSACTION.
When a connection is in auto-commit mode, attempts to set or get USER_TRANSACTION properties are
ignored (nothing is stored, and null is returned without accessing the database).

A property named <name>@SYSTEM is retrieved as <name> in the context SYSTEM. Properties in the SYSTEM
context are read-only, so they cannot be set. For Connection.setClientInfo(String, String),
attempts to set a SYSTEM property result in a SQLClientInfoException, for
Connection.setClientInfo(Properties), SYSTEM properties are silently ignored.

Attempts to retrieve non-existent properties, even from SYSTEM will return null and will not result
in an exception.

A connection registers properties known to that specific connection. By default, only the JDBC-
specified properties ApplicationName, ClientUser and ClientHostName (see also JDBC-specified
properties below) are known. A successful get or set of a property will register that property as a
known property for the current connection only.

The method Connection.getClientInfo() will retrieve only known properties (the default properties
and those registered for the current connection). It will not attempt to query or identify other
variables registered in any context.

The method Connection.setClientInfo(Properties) clears (sets to NULL) known properties in
USER_SESSION and — if not in auto-commit — USER_TRANSACTION if they are not included in the
Properties object.

DatabaseMetaData.getClientInfoProperties() reports the JDBC-specified properties only; it will not
report the additional properties registered for the current connection.

See also jdp-2023-11: New design client info properties [https://github.com/FirebirdSQL/jaybird/blob/

master/devdoc/jdp/jdp-2023-11-new-design-client-info-properties.adoc]

JDBC-specified properties

The JDBC-specified properties are:

ApplicationName

The name of the application currently utilizing the connection

Chapter 9. Connection reference

109

https://github.com/FirebirdSQL/jaybird/blob/master/devdoc/jdp/jdp-2023-11-new-design-client-info-properties.adoc

ClientUser

The name of the user that the application using the connection is
performing work for. This may not be the same as the user name that was
used in establishing the connection.

ClientHostname

The hostname of the computer the application using the connection is
running on.

All JDBC-specified properties are get and set in USER_SESSION. On get of ApplicationName, if this
property is not currently set in USER_SESSION, it falls back to get the value from
CLIENT_PROCESS@SYSTEM. The CLIENT_PROCESS@SYSTEM value can be specified using the connection
property processName or system property org.firebirdsql.jdbc.processName. The ClientUser and
ClientHostname properties are considered application-specific and have no default value or fallback.

9.11.3. Connection pools and client info properties

Since: Jaybird 6

If you use a connection pool populated from org.firebirdsql.ds.FBConnectionPoolDataSource or
org.firebirdsql.ds.FBXADataSource, the known properties are reset each time the connection is
handed out by the pool. This assumes the pool uses getConnection() from PooledConnection
/XAConnection each time it hands out the connection. This reset only removes the property name
from the list of known properties of the connection, it does not clear the property values from
USER_SESSION. If properties contain sensitive values you will need to explicitly clear them.

This reset is not applied when using a connection pool which is populated by different means (e.g.
from DriverManager or from a normal javax.sql.DataSource like
org.firebirdsql.ds.FBSimpleDataSource). If your connection pool implementation supports custom
code to reset a connection, and you need known properties to reset when a connection is reused,
make it call FirebirdConnection.resetKnownClientInfoProperties(), or call it yourself:

if (connection.isWrapperFor(FirebirdConnection.class)) {
 connection.unwrap(FirebirdConnection.class)
 .resetKnownClientInfoProperties();
}

In the future, Jaybird may be changed to also perform this reset in Connection.beginRequest()
and/or Connection.endRequest().

[1] Internally SrpNNN continues to use SHA-1, only the client-proof applies the SHA-NNN hash. See also firebird#6051
[https://github.com/FirebirdSQL/firebird/issues/6051]).

[2] since Firebird 3.0.2, version 13 for 3.0.0 and 3.0.1

[3] Jaybird has no protocol 14 implementation

[4] Jaybird has no protocol 17 implementation

[5] from java.sql.Connection#setClientInfo(String,String) [https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/

Connection.html#setClientInfo(java.lang.String,java.lang.String)]

Chapter 9. Connection reference

110

https://github.com/FirebirdSQL/firebird/issues/6051
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/Connection.html#setClientInfo(java.lang.String,java.lang.String)

Chapter 10. Statement reference

10.1. Generated keys retrieval
Jaybird provides support for the getGeneratedKeys() JDBC feature for Statement and
PreparedStatement. This feature can be used to retrieve the generated ids (and other columns) from
DML statements.

This feature is available for Connection.prepareStatement, and Statement.execute,
Statement.executeUpdate and Statement.executeLargeUpdate.

There are four distinct use-cases:

1. Methods accepting an int parameter with values of Statement.NO_GENERATED_KEYS and
Statement.RETURN_GENERATED_KEYS, see Basic generated keys retrieval,

2. Methods accepting an int[] parameter with column indexes, see Generated keys by column
index.

3. Methods accepting a String[] parameter with column names, see Generated keys by column
name.

4. Providing a query already containing a RETURNING clause to any of these methods.

In this case all the previous cases are ignored and the query is executed as is. It is possible to
retrieve the result set using getGeneratedKeys().

ANTLR Runtime required in Jaybird 4.0.7 and earlier

For Jaybird 4.0.7 and earlier, the generated keys functionality will only be available if the
ANTLR runtime classes are on the classpath. Except for calling methods with
NO_GENERATED_KEYS, absence of the ANTLR runtime will throw FBDriverNotCapableException.


The required ANTLR runtime version depends on the Jaybird version, check
the release notes of your version for details.

Since Jaybird 4.0.8, Jaybird uses a custom parser and no longer requires ANTLR for the
generated keys feature. If you previously relied on absence of ANTLR to disable generated
keys support, the generated keys feature can be disabled by setting connection property
generatedKeysEnabled to disabled.

This functionality is available for INSERT, UPDATE, UPDATE OR INSERT and DELETE, and for MERGE (Since:
Firebird 3.0).



Generated keys retrieval modifies the statement to add a RETURNING-clause. Firebird
4.0 and earlier only support RETURNING for DML operations that affect a single row.
Attempting to use generated keys retrieval with a statement that affects multiple
rows will yield the error "multiple rows in singleton select".

Chapter 10. Statement reference

111

Since: Jaybird 5/Firebird 5.0 Support for multi-row RETURNING is introduced in
Firebird 5.0. Support for multi-row RETURNING is available in Jaybird 5.

The examples in this section use the following (Firebird 3.0) table:

Example person table

create table PERSON (
 ID integer generated by default as identity constraint pk_employee primary key,
 FIRSTNAME varchar(20),
 LASTNAME varchar(20),
 BIRTHDATE date,
 "age" integer generated always as (datediff(year, birthdate, current_date))
)

10.1.1. Basic generated keys retrieval

This form of generated keys execution involves the following methods:

• Connection.prepareStatement(String sql, int autoGeneratedKeys)

• Statement.execute(String sql, int autoGeneratedKeys)

• Statement.executeUpdate(String sql, int autoGeneratedKeys)

• Statement.executeLargeUpdate(String sql, int autoGeneratedKeys)

When NO_GENERATED_KEYS is passed, the query will be executed as a normal query.

When RETURN_GENERATED_KEYS is passed, the driver will return all columns of the table as generated
keys. The columns are ordered by ordinal position (as reported in the JDBC metadata of the table). It
is advisable to retrieve the values from the getGeneratedKeys() result set by column name.

We opted to include all columns as it is next to impossible to decide which columns are populated
by a trigger or otherwise. Only returning the primary key will be too restrictive (consider computed
columns, default values, etc).

Passing NO_GENERATED_KEYS hardcoded should normally not be done. It would be better to use the
equivalent prepareStatement or executeXXX method that only accepts a String. Use of the value
NO_GENERATED_KEYS only makes sense in code that dynamically decides between NO_GENERATED_KEYS
and RETURN_GENERATED_KEYS.

Example using RETURN_GENERATED_KEYS

The following will insert a person using a Statement and retrieve the generated id using
Statement.RETURN_GENERATED_KEYS:

Statement generated keys retrieval

Connection connection = ...;
try (Statement statement = connection.createStatement()) {
 statement.executeUpdate(

Chapter 10. Statement reference

112

 "insert into person(firstname, lastname, birthdate) "
 + "values ('Mark', 'Rotteveel', date'1979-01-12')",
 Statement.RETURN_GENERATED_KEYS); ①

 try (ResultSet keys = statement.getGeneratedKeys()) { ②
 if (keys.next()) { ③
 int generatedId = keys.getInt("id"); ④
 int age = keys.getInt("age"); ⑤
 String firstName = keys.getString("firstname"); ⑥

 System.out.printf("Inserted: %s, Id: %d, Age: %d%n",
 firstName, generatedId, age);
 }
 }
}

① Use of Statement.RETURN_GENERATED_KEYS instructs Jaybird to parse the statement and add a
RETURNING clause with all columns of the PERSON table

② Get the generated keys result set from the statement

③ Just like a normal result set, it is positioned before the first row, so you need to call next()

④ The generated value of the ID column

⑤ The calculated value of the AGE column

⑥ The generated keys result set also contains the normal columns like FIRSTNAME

The equivalent using PreparedStatement is:

Prepared statement generated keys retrieval

try (PreparedStatement statement = connection.prepareStatement(
 "insert into person(firstname, lastname, birthdate) values (?, ?, ?)",
 Statement.RETURN_GENERATED_KEYS)) { ①
 statement.setString(1, "Mark");
 statement.setString(2, "Rotteveel");
 statement.setObject(3, LocalDate.of(1979, 1, 12));

 statement.executeUpdate();
 try (ResultSet keys = statement.getGeneratedKeys()) { ②
 if (keys.next()) { ③
 int generatedId = keys.getInt("id"); ④
 int age = keys.getInt("age"); ⑤
 String firstName = keys.getString("firstname");

 System.out.printf("Inserted: %s, Id: %d, Age: %d%n",
 firstName, generatedId, age);
 }
 }
}

Chapter 10. Statement reference

113

① Besides use of parameters, the only real difference is that use of
Statement.RETURN_GENERATED_KEYS moved from execution to prepare. This makes sense if you
consider that once prepared, the statement can be reused.

10.1.2. Generated keys by column index

This form of generated keys execution involves the following methods:

• Connection.prepareStatement(String sql, int[] columnIndexes)

• Statement.execute(String sql, int[] columnIndexes)

• Statement.executeUpdate(String sql, int[] columnIndexes)

• Statement.executeLargeUpdate(String sql, int[] columnIndexes)

The values in the int[] parameter are the ordinal positions of the columns as specified in the (JDBC)
metadata of the table.



In Jaybird 3 and earlier, a null or empty array was silently ignored and the
statement was executed normally (not producing generated keys). In Jaybird 4, this
behaviour has changed and instead will throw an exception with message
"Generated keys array columnIndexes was empty or null. A non-empty array is
required."

In Jaybird 3 and earlier, invalid ordinal positions are ignored and silently dropped:
passing new int[] { 1, 5, 6 } will work, even though we don’t have sixth column.
In Jaybird 4, this behavior has changed and instead will throw an exception with
message "Generated keys column position <position> does not exist for table
<tablename>. Check DatabaseMetaData.getColumns (column ORDINAL_POSITION)
for valid values."

Example using column indexes

Retrieval by column index uses the ordinal position as reported in DatabaseMetaData.getColumns,
column ORDINAL_POSITION. In practice this is the value of RDB$RELATION_FIELDS.RDB$FIELD_POSITION +
1 of that column.

In our example, the columns are

1. ID

2. FIRSTNAME

3. LASTNAME

4. BIRTHDATE

5. age

Prepared statement generated keys retrieval by index

try (PreparedStatement statement = connection.prepareStatement(
 "insert into person(firstname, lastname, birthdate) values (?, ?, ?)",

Chapter 10. Statement reference

114

 new int[] { 1, 5 })) { ①
 statement.setString(1, "Mark");
 statement.setString(2, "Rotteveel");
 statement.setObject(3, LocalDate.of(1979, 1, 12));

 statement.executeUpdate();
 try (ResultSet keys = statement.getGeneratedKeys()) {
 if (keys.next()) {
 int generatedId = keys.getInt("id"); ②
 int age = keys.getInt(2); ③

 System.out.printf("Id: %d, Age: %d%n",
 generatedId, age);
 }
 }
}

① Instead of Statement.RETURN_GENERATED_KEYS, the column indices are passed in an array, in this
case 1 for ID and 5 for age.

② Retrieval of the first column, ID, by name

③ Retrieval of the second column, age, by result set position. Notice that the index used for
retrieval does not match the column position in the table (5) passed in the prepare. As this is the
second column in the result set, it is retrieved from the result set by 2.



In Jaybird 3 and earlier, the array of indices is sorted in ascending order before
use: passing new int[] { 4, 1, 3 } will yield columns in order ID, LASTNAME,
BIRTHDATE. In Jaybird 4, this sort is no longer applied, so columns will be in the
order specified by the array: BIRTHDATE, ID, LASTNAME. To avoid issues, we
recommend specifying the columns in ascending order, or always retrieve them by
name.

10.1.3. Generated keys by column name

This form of generated keys execution involves the following methods:

• Connection.prepareStatement(String sql, String[] columnNames)

• Statement.execute(String sql, String[] columnNames)

• Statement.executeUpdate(String sql, String[] columnNames)

• Statement.executeLargeUpdate(String sql, String[] columnNames)

The values in the String[] are the column names to be returned. The column names provided are
processed as is and are not checked for validity or the need of quoting. Providing non-existent or
incorrectly (un)quoted columns will result in an exception when the statement is processed by
Firebird (be aware: the JDBC specification is not entirely clear if this is valid behavior, so this might
change in the future). This method is the fastest as it does not retrieve metadata from the server.

 In Jaybird 3 and earlier, a null or empty array was silently ignored and the

Chapter 10. Statement reference

115

statement was executed normally (not producing generated keys). In Jaybird 4, this
behaviour has changed and instead will throw an exception with message
"Generated keys array columnNames was empty or null. A non-empty array is
required."

Example using column names

Prepared statement generated keys retrieval by name

try (PreparedStatement statement = connection.prepareStatement(
 "insert into person(firstname, lastname, birthdate) values (?, ?, ?)",
 new String[] { "id", "\"age\"" })) { ①
 statement.setString(1, "Mark");
 statement.setString(2, "Rotteveel");
 statement.setObject(3, LocalDate.of(1979, 1, 12));

 statement.executeUpdate();
 try (ResultSet keys = statement.getGeneratedKeys()) {
 if (keys.next()) {
 int generatedId = keys.getInt("id");
 int age = keys.getInt("age");

 System.out.printf("Id: %d, Age: %d%n",
 generatedId, age);
 }
 }
}

① The column names are passed as is, this means that correct quoting is required for case-
sensitive columns (and other names that require quoting).



The requirement to pass column names correctly quoted is not specified in the
JDBC standard. It may change in future Jaybird versions to conform with column
names as returned from DatabaseMetaData.getColumn. That is, unquoted exactly as
stored in RDB$RELATION_FIELDS.RDB$FIELD_NAME. Quoting the column names would
then be done by Jaybird.

When this changes, a connection property for backwards compatibility will be
provided.

10.1.4. Configuring generated keys support

The connection property generatedKeysEnabled (alias generated_keys_enabled) allows the behaviour
of generated keys support to be configured. This property is also available on data sources.

This property supports the following values (case-insensitive):

• default: default behaviour to enable generated keys for statement types with RETURNING clause in
the connected Firebird version. Absence of this property, null or empty string implies default.

Chapter 10. Statement reference

116

• disabled: disable support. Attempts to use generated keys methods other than using
Statement.NO_GENERATED_KEYS will throw a SQLFeatureNotSupportedException.

• ignored: ignore generated keys support. Attempts to use generated keys methods will not
attempt to detect generated keys support and execute as if the statement generates no keys. The
Statement.getGeneratedKeys() method will always return an empty result set. This behaviour is
equivalent to using the non-generated keys methods.

• A comma-separated list of statement types to enable.

For disabled and ignored, DatabaseMetaData.supportsGetGeneratedKeys will report false.

Because of the behaviour specified in the next section, typos in property values will behave as
ignored (e.g. using generatedKeysEnabled=disable instead of disabled will behave as ignored).

Selectively enable statement types

This last option allows you to selectively enable support for generated keys. For example,
generatedKeysEnabled=insert will only enable it for insert while ignoring it for all other statement
types. Statement types that are not enabled will behave as if they generate no keys and will execute
normally. For these statement types, Statement.getGeneratedKeys() will return an empty result set.

Possible statement type values (case-insensitive) are:

• insert

• update

• delete

• update_or_insert

• merge

Invalid values will be ignored. If none of he specified statement types are supported by Firebird, it
will behave as ignored.[1]

Some examples:

• jdbc:firebird://localhost/testdb?generatedKeysEnabled=insert will only enable insert support

• jdbc:firebird://localhost/testdb?generatedKeysEnabled=merge will only enable merge support.
But only on Firebird 3.0 and higher, for Firebird 2.5 this will behave as ignored given the lack of
RETURNING support for merge.

• jdbc:firebird://localhost/testdb?generatedKeysEnabled=insert,update will only enable insert
and update support

This feature can be used to circumvent issues with frameworks or tools that always use generated
keys methods for prepare or execution. For example with UPDATE statements that touch multiple
records and — given the Firebird 4.0 and earlier limitations for RETURNING — produce the error
"multiple rows in singleton select".

Chapter 10. Statement reference

117

10.2. Connection property ignoreProcedureType
On Firebird 2.1 and higher, Jaybird will use the procedure type information from the database
metadata to decide how to execute CallableStatement. When a procedure is selectable, Jaybird will
automatically transform a call-escape or EXECUTE PROCEDURE statement to a SELECT.

In some cases this automatic transformation to use a SELECT leads to problems. You can explicitly set
FirebirdCallableStatement.setSelectableProcedure(false) to fix most of these issues, but this is not
always an option. For example spring-data-jpa’s @Procedure will not work correctly with selectable
procedures, but you can’t call setSelectableProcedure.

To disable this automatic usage of procedure type information, set connection property
ignoreProcedureType=true. When necessary you can use
FirebirdCallableStatement.setSelectableProcedure(true) to execute a procedure using SELECT.

Be aware though, when EXECUTE PROCEDURE is used with a selectable procedure, it is executed only
up to the first SUSPEND, and the rest of the stored procedure is not executed.

For Firebird 2.0 and lower this property has no effect, as there the procedure type information is
not available.

10.3. Connection property scrollableCursor
Since: Jaybird 5
Since: Firebird 5.0

On Firebird 5.0 and higher, Jaybird 5 and higher support server-side scrollable cursors..

This feature is only available on pure Java connections, and only when explicitly enabled with
connection property scrollableCursor. Support is only available in pure Java, as the bindings for
native and embedded use the legacy fbclient API, and scrollable cursors are not exposed in the
legacy fbclient API.

The connection property scrollableCursor has the following values (case-insensitive):

EMULATED

(default) Use client-side cached result set; this is the same behaviour as previous Jaybird
versions used

SERVER

Use server-side scrollable cursors, if possible

If a connection does not support scrollable cursors, or if holdable cursors are requested, the
behaviour will silently fall back to emulated scrollable cursors.

Compared to emulated scrollable cursor, server-side scrollable cursors exhibit slightly different
behaviour (we may change the behaviour of emulated later in Jaybird 5 or in a future Jaybird
release):

• New rows are inserted at the end of the cursor, where in emulated they are inserted before the

Chapter 10. Statement reference

118

current row

• Deleted rows are visible with an all-null marker row, where in emulated, the deleted row is
removed from the result set

• Result sets now report true for rowUpdated(), rowDeleted() and rowInserted() for rows updated,
deleted or inserted through the result set.

This is not yet reflected in updatesAreDetected(), deletesAreDetected() and insertsAreDetected()
of DatabaseMetaData. This will be corrected when we retrofit the new behaviour for emulated as
well.

See also jdp-2021-04 [https://github.com/FirebirdSQL/jaybird/tree/master/devdoc/jdp/jdp-2021-04-real-scrollable-

cursor-support.md.md].

10.4. Connection property useServerBatch
Since: Jaybird 5
Since: Firebird 4.0

A Boolean property to configure use of server-side batch updates. The default value is true, to use
server-side batch updates when possible. Set to false to disable server-side batch updates and
always use emulated batch updates.

See Server-side Batch Updates for more information.

10.5. Connection property serverBatchBufferSize
Since: Jaybird 5
Since: Firebird 4.0

Configures the server-side batch buffer size in bytes.

Possible values

< 0 use server-side default (16MB as of Firebird 4.0)

0 (default) use server-side maximum (256MB as of Firebird 4.0)

> 0 batch buffer size capped at server-side maximum

Too small buffer sizes will use 128KB or the size necessary for two rows (whichever is bigger). Too
large buffer sizes will use the server-side maximum (256MB as of Firebird 4.0).

See Server-side Batch Updates for more information.

[1] This is not the case for the unsupported Firebird 1.0 and 1.5 versions. There this will behave similar to disabled, and you will
need to explicitly specify ignored instead to get this behaviour.

Chapter 10. Statement reference

119

https://github.com/FirebirdSQL/jaybird/tree/master/devdoc/jdp/jdp-2021-04-real-scrollable-cursor-support.md.md

Chapter 10. Statement reference

120

Chapter 11. General

11.1. Logging
Jaybird logs a variety of information during its work.

For logging, jaybird uses the following log levels:

Jaybird log level Description

trace low-level debug information

debug debug information

info informational messages

warn warnings

error errors

fatal severe/fatal errors (though in general, level
error will be used instead of fatal)

Removed in: Jaybird 6

11.1.1. Java Platform Logging API

Since: Jaybird 6

Since Jaybird 6, the Java Platform Logging API (JEP 264 [https://openjdk.org/jeps/264]) is used.

The Java Platform Logging API by default logs to java.util.logging, but it is possible to plugin
different logging platforms. For example, Log4j provides the log4j-jpl dependency which will
replace the default binding to java.util.logging with one to Log4j.

11.1.2. java.util.logging

Removed in: Jaybird 6

Jaybird uses java.util.logging by default.

Jaybird applies the following mapping for its log levels:

Jaybird log level jul log level

Logger.trace Level.FINER

Logger.debug Level.FINE

Logger.info Level.INFO

Logger.warn Level.WARNING

Logger.error Level.SEVERE

Logger.fatal Level.SEVERE

Chapter 11. General

121

https://openjdk.org/jeps/264

11.1.3. Disable logging

Since: Jaybird 6 To disable logging, configure your logging library. For example, when using
java.util.logging, use a properties file (specified with -Djava.util.logging.config.file=<file>)
including:

org.firebirdsql.level = OFF

Consult the documentation of java.util.logging or your actual logging library for other options to
disable logging.

Removed in: Jaybird 6 To disable logging, specify system property
org.firebirdsql.jdbc.disableLogging with value true.

11.1.4. Console logging

Since: Jaybird 6 To write logging to the console, configure your logging library. For example, when
using java.util.logging, use a properties file (specified with
-Djava.util.logging.config.file=<file>) including:

handlers = java.util.logging.ConsoleHandler


Contrary to the solution available under Jaybird 5 and earlier, java.util.logging
does not provide a (standard) way to log to System.out (its ConsoleHandler logs to
System.err), this would require a custom handler implementation.

Removed in: Jaybird 6 Jaybird can write its logging to the System.out for info and lower and
System.err for warn and above. Levels debug and trace are disabled in the implementation. To
enable logging to the console, you can set system property org.firebirdsql.jdbc.forceConsoleLogger
to true.

11.1.5. Custom logging implementation

Removed in: Jaybird 6

You can provide your own logging implementation if you don’t want to use java.util.logging or
console logging.

To provide a custom logging implementation, you need to implement interface
org.firebirdsql.logging.Logger. This implementation must be public and must have a public
constructor with a single String argument for the logger name. Set system property
org.firebirdsql.jdbc.loggerImplementation with the fully-qualified name of your implementation.

The org.firebirdsql.logging.Logger interface should be considered volatile and might change in
minor releases (but not point/bugfix releases).

For example:

Chapter 11. General

122

package org.example.jaybird.logging;

public class CustomLogger implements org.firebirdsql.logging.Logger {
 public CustomLogger(String name) {
 // create the logger
 }
 // implementation of org.firebirdsql.logging.Logger interface
}

On the Java command line, specify:

-Dorg.firebirdsql.jdbc.loggerImplementation=org.example.jaybird.logging.CustomLogger



Since: Jaybird 6 If you need a custom logger implementation under Jaybird 6, you
will need to provide an implementation of java.lang.System.Logger and
java.lang.System.LoggerFinder and a service loader definition.

Make sure you really need this: if you want to use a different logging library, it
may already have the necessary implementation (for example, Log4j has the
log4j-jpl dependency).

Chapter 11. General

123

Chapter 11. General

124

Chapter 12. Datatype reference


This section documents non-standard datatypes supported by Jaybird, behaviour
deviating from standard JDBC expectations, or recently introduced features. It
does not provide full documentation for all supported datatypes.

12.1. Binary types BINARY/VARBINARY
The JDBC (and SQL standard) types BINARY and VARBINARY are called CHAR(n) CHARACTER SET OCTETS
and VARCHAR(n) CHARACTER SET OCTETS in Firebird.

(Since: Firebird 4.0) Firebird 4.0 introduces the names BINARY and VARBINARY/BINARY VARYING as
aliases for (VAR)CHAR(n) CHARACTER SET OCTETS.

In Java, binary and varbinary are usually handled with byte arrays and InputStream/OutputStream.

12.1.1. Always BINARY/VARBINARY

Jaybird always handles (VAR)CHAR(n) CHARACTER SET OCTETS as JDBC types as BINARY/VARBINARY.

Jaybird will report the JDBC BINARY/VARBINARY type information in all metadata (DatabaseMetaData,
ResultSetMetaData, ParameterMetaData) for columns and parameters of type (VAR)CHAR(n) CHARACTER
SET OCTETS, and getObject(int/String) will always return byte[].

The getters (on result set/callable statement), setters (prepared/callable statement), and update
methods (result set) for columns of this type are restricted to:

• get/set/updateNull

• get/set/updateBytes

• get/set/updateBinaryStream

• get/set/updateAsciiStream

• get/set/updateString (using the default encoding or connection encoding)

• get/set/updateCharacterStream (using the default encoding or connection encoding)

• get/set/updateObject (with String, byte[], InputStream, Reader)

• get/setObject with a java.sql.RowId

• get/setRowId

Other getters/setters/updaters or object types supported for 'normal' (VAR)CHAR fields are not
available.

12.2. Type BOOLEAN
Since: Firebird 3.0

Firebird 3.0 introduced the SQL standard type BOOLEAN.

Chapter 12. Datatype reference

125

12.2.1. Support for BOOLEAN

On parameters of type BOOLEAN, Jaybird supports most of the other Java types, using the following
mapping:

Type setXXX getXXX

String "true"/"Y"/"T"/"1" sets true,
everything else sets false

true is "true", false is "false"

integer types 0 sets false, everything else sets true true is 1, false is 0

float Exact 0.0f sets false, everything else
sets true [1]

true is 1.0f, false is 0.0f

double Exact 0.0 sets false, everything else
sets true [1]

true is 1.0, false is 0.0

BigDecimal 0 (ZERO) (using compareTo) sets false,
everything else sets true

true is 1 (ONE), false is 0 (ZERO)

We recommend to avoid the float, double and BigDecimal options.

12.2.2. Workarounds for booleans

Firebird 2.5 and earlier do not support BOOLEAN, but support for booleans can be simulated

The following options are recommended:

• Use SMALLINT with values 0 and 1

• Use CHAR(1) (or VARCHAR(1)) with values 'Y' and 'N'

• Use CHAR or VARCHAR with length 5 or longer with values 'true' and 'false'

We recommend creating a domain for 'simulated' booleans with a check constraint to restrict the
possible values. If you do this, name the domain something like D_BOOLEAN, and avoid the name
BOOLEAN to prevent problems when upgrading to Firebird 3.0.

For non-boolean types, Jaybird supports the following conversions with setBoolean and getBoolean:

Type getBoolean setBoolean

(VAR)CHAR(<5) 'Y'/'T'/'1'/'true' is true (case-
insensitive), everything else is false

true sets 'Y', false sets 'N'

(VAR)CHAR(>=5) 'Y'/'T'/'1'/'true' is true (case-
insensitive), everything else is false

true sets 'true', false sets 'false'

BLOB SUB_TYPE TEXT 'Y'/'T'/'1'/'true' is true (case-
insensitive), everything else is false

true sets 'true', false sets 'false'

SMALLINT/INTEGER/BIGINT 1 is true, everything else is false true sets 1, false sets 0

DECIMAL/NUMERIC Truncated integral value 1 is true,
everything else is false

true sets 1, false sets 0

Chapter 12. Datatype reference

126

Type getBoolean setBoolean

REAL/FLOAT Exact 1.0f is true, everything else is
false [2]

true sets 1.0f, false sets 0.0f

DOUBLE PRECISION Exact 1.0 is true, everything else is
false [2]

true sets 1.0, false sets 0.0

DECFLOAT Exact 1E0 is true, everything else is
false (including 1.0E0!) [3]

true sets 1E0, false sets 0E0

We recommend to avoid the DECIMAL, NUMERIC, REAL/FLOAT, DOUBLE PRECISION or DECFLOAT options.

12.3. Date/time types

12.3.1. Time zones

Since: Firebird 4.0

Firebird 4.0 introduced time zone types, with types TIME WITH TIME ZONE and TIMESTAMP WITH TIME
ZONE. See the Firebird 4.0 release notes [https://www.firebirdsql.org/file/documentation/release_notes/html/en/

4_0/rlsnotes40.html] and doc/sql.extensions/README.time_zone.md in the Firebird installation for details
on these types.

Two connection properties, dataTypeBind and sessionTimeZone, are available to provide limited
support for these types. See Defining time zone data type bind and Connection property
sessionTimeZone for details.

The time zone types are supported under Java 8 and higher, using the Java 8 (or higher) version of
Jaybird. Time zone types are not supported under Java 7, and you will need to enable legacy time
zone bind to use these types. With legacy time zone bind, Firebird will convert to the equivalent
TIME and TIMESTAMP (WITHOUT TIME ZONE) types using the session time zone. Time zone binds can be
configured with connection property dataTypeBind, for more information see Defining time zone
data type bind.

Scope of time zone support

JDBC 4.2 introduced support for time zones, and maps these types to java.time.OffsetTime and
java.time.OffsetDateTime. JDBC does not define explicit setters for these types. Use setObject(index,
value), updateObject(index, value), getObject(index/name) or getObject(index/name, classType).

Firebird 4.0 supports both offset and named time zones. Given the definition in JDBC, Jaybird
defaults to offset time zones. On retrieval of a value with a named zone, Jaybird will make a best
effort to convert to the equivalent offset using Java’s time zone information. If no mapping is
available the time will be returned at UTC (offset zero).

Since: Jaybird 4.0.1
Since Jaybird 4.0.1, it is also possible to get and set java.time.ZonedDateTime, which preserves the
named zone information.

Jaybird 4 supports the following Java types on fields of time zone types (those marked with * are

Chapter 12. Datatype reference

127

https://www.firebirdsql.org/file/documentation/release_notes/html/en/4_0/rlsnotes40.html

not defined in JDBC)

TIME WITH TIME ZONE:

• java.time.OffsetTime (default for getObject)

◦ On get, if the value is a named zone, it will derive the offset using the base date 2020-01-01
(in 4.0.0 it used the current date). The offset can be different from the offset of the
OffsetDateTime for the same value.

• java.time.OffsetDateTime

◦ On get the current date is added

▪ For a named zone, the time in the zone is derived at 2020-01-01 and then rebased to the
current date. As a result, the offset can be different from an OffsetTime.

◦ On set the date information is removed

• java.time.ZonedDateTime (*) Since: Jaybird 4.0.1

◦ On get the time in the zone is derived at 2020-01-01 and then rebased to the current date.

◦ On set, the time is rebased to 2020-01-01 and then the date information is removed.

• java.lang.String

◦ On get applies OffsetTime.toString() (e.g. 13:25:13.1+01:00)

◦ On set tries the default parse format of either OffsetTime or OffsetDateTime (e.g.
13:25:13.1+01:00 or 2019-03-10T13:25:13+01:00) and then sets as that type

• java.sql.Time (*)

◦ On get obtains java.time.OffsetDateTime, converts this to epoch milliseconds and uses new
java.sql.Time(millis)

◦ On set applies toLocalTime(), combines this with LocalDate.now() and then derives the offset
time for the default JVM time zone

• java.sql.Timestamp (*)

◦ On get obtains java.time.OffsetDateTime, converts this to epoch milliseconds and uses new
java.sql.Timestamp(millis)

◦ On set applies toLocalDateTime() and derives the offset time for the default JVM time zone

TIMESTAMP WITH TIME ZONE:

• java.time.OffsetDateTime (default for getObject)

• java.time.OffsetTime (*)

◦ On get, the date information is removed

◦ On set, the current date is added

• java.time.ZonedDateTime (*) Since: Jaybird 4.0.1

• java.lang.String

◦ On get applies OffsetDateTime.toString() (e.g. 2019-03-10T13:25:13.1+01:00)

Chapter 12. Datatype reference

128

◦ On set tries the default parse format of either OffsetTime or OffsetDateTime (e.g.
13:25:13.1+01:00 or 2019-03-10T13:25:13+01:00) and then sets as that type

• java.sql.Time (*)

◦ On get obtains java.time.OffsetDateTime, converts this to epoch milliseconds and uses new
java.sql.Time(millis)

◦ On set applies toLocalTime(), combines this with LocalDate.now() and then derives the offset
date time for the default JVM time zone

• java.sql.Timestamp (*)

◦ On get obtains java.time.OffsetDateTime, converts this to epoch milliseconds and uses new
java.sql.Timestamp(millis)

◦ On set applies toLocalDateTime() and derives the offset date time for the default JVM time
zone

• java.sql.Date (*)

◦ On get obtains java.time.OffsetDateTime, converts this to epoch milliseconds and uses new
java.sql.Date(millis)

◦ On set applies toLocalDate() at start of day and derives the offset date time for the default
JVM time zone

In addition, Firebird 4.0 has 'bind-only' data types EXTENDED TIME/TIMESTAMP WITH TIME ZONE. These
data types can be set through the data type bind configuration and include an extra offset in its
data so clients without access to ICU or other time zone data can use the offset as determined by
Firebird.

Jaybird provides minimal support for these types by handling them the same as the normal WITH
TIME ZONE types. That means the extra offset information is ignored and Jaybird will always use the
Java time zone information to calculate the offset of a named zone, and if a zone is unknown in
Java, Jaybird will fallback to UTC even when the actual offset is available in the 'extended' time
zone type.

See also:

jdp-2020-01: Extended Time Zone Types Support [https://github.com/FirebirdSQL/jaybird/blob/master/

devdoc/jdp/jdp-2020-01-extended-time-zone-types-support.md]

jdp-2020-06: OffsetTime derivation for named zone [https://github.com/FirebirdSQL/jaybird/blob/

master/devdoc/jdp/jdp-2020-06-offsettime-derivation-for-named-zone.md]

jdp-2020-09: Add ZonedDateTime support [https://github.com/FirebirdSQL/jaybird/blob/master/devdoc/

jdp/jdp-2020-09-add-zoneddatetime-support.md]

Support for legacy JDBC date/time types

For the WITH TIME ZONE types, JDBC does not define support for the legacy JDBC types (java.sql.Time,
java.sql.Timestamp and java.sql.Date). To ease the transition and potential compatibility with tools
and libraries, Jaybird does provide support. However, we strongly recommend to avoid using these
types.

Chapter 12. Datatype reference

129

https://github.com/FirebirdSQL/jaybird/blob/master/devdoc/jdp/jdp-2020-01-extended-time-zone-types-support.md
https://github.com/FirebirdSQL/jaybird/blob/master/devdoc/jdp/jdp-2020-06-offsettime-derivation-for-named-zone.md
https://github.com/FirebirdSQL/jaybird/blob/master/devdoc/jdp/jdp-2020-09-add-zoneddatetime-support.md

Compared to the WITHOUT TIME ZONE types, there may be small discrepancies in values as Jaybird
uses 1970-01-01 for WITHOUT TIME ZONE, while for WITH TIME ZONE it uses the current date. If this is
problematic, then either apply the necessary conversions yourself, enable legacy time zone bind, or
define or cast your columns to TIME or TIMESTAMP.

No support for other java.time types

The types java.time.LocalTime, java.time.LocalDateTime and java.time.LocalDate are not supported
for the time zone types. Supporting these types would be ambiguous. If you need to use these, then
either apply the necessary conversions yourself, enable legacy time zone bind, or define or cast
your columns as TIME or TIMESTAMP.

Jaybird also does not support non-standard extensions like java.time.Instant. If there is interest,
we may add them in the future.

Defining time zone data type bind

Jaybird 3.0.9 added the connection property dataTypeBind to defining data type mappings. This can
be used to configure conversion of WITH TIME ZONE types to a different datatype. When configured,
Firebird will present columns or parameters of TIME(STAMP) WITH TIME ZONE as the specified type,
allowing clients without support for WITH TIME ZONE to read or set values.

This property needs to be explicitly set if you are using Jaybird 4 on Java 7 or Jaybird 3 (on any Java
version), and need to handle the WITH TIME ZONE types. It can also be used for tools or applications
that expect java.sql.Time/Timestamp types and cannot use the java.time.OffsetTime/OffsetDateTime
types returned for the WITH TIME ZONE types.

To map TIME WITH TIME ZONE and TIMESTAMP WITH TIME ZONE to the legacy without time zone types,
you can use:

Map with time zone types to without time zone types

Properties props = new Properties();
props.setProperty("dataTypeBind",
 "time with time zone to legacy;timestamp with time zone to legacy");

Instead of legacy, you can also explicitly specify time and timestamp respectively.

Firebird will convert a WITH TIME ZONE type to the equivalent WITHOUT TIME ZONE type using the
session time zone to derive the value.

Result set columns and parameters on prepared statements will behave as the equivalent WITHOUT
TIME ZONE types. This conversion is not applied to the database metadata which will always report
WITH TIME ZONE information.

The TIME ZONE TO EXTENDED binds (including type-specific variants) is only supported under Java 8
and higher using the Java 8 or higher version of Jaybird. As mentioned earlier, the support for
'extended' time zone types will behave identical to the normal time zone types.

See also Data type bind support.

Chapter 12. Datatype reference

130

Connection property sessionTimeZone

The connection property sessionTimeZone (alias session_time_zone) does two things:

1. specifies the Firebird 4.0 session time zone,

2. specifies the time zone to use when converting values of without time zone types to the legacy
JDBC datetime types on all Firebird versions.

See Firebird session time zone for information on the effects of sessionTimeZone on the server-side.

Valid values are time zone names known by Firebird, we recommend to use the long names (e.g.
Europe/Amsterdam) and not the ambiguous short IDs (e.g. CET). Although not required, we recommend
to use time zone names that are known by Firebird and Java (see Session time zone for conversion
for caveats).

In Jaybird 3, sessionTimeZone will only configure the server-side session time zone. Client-side,
Jaybird will continue to use the JVM default time zone for parsing the without time zone values to
the java.sql.Time/Timestamp/Date types. Setting sessionTimeZone to the JVM default time zone will
yield the best (i.e. correct) values, but not setting it (and thus using the server default) will retain
behaviour that is backwards compatible with behaviour of previous versions of Jaybird. In Jaybird
4, this property also configures client-side parsing of values to these legacy types.



On Jaybird 3, we recommend not setting this property, or setting it to the default
JVM time zone. If you set it to a different time zone, then we recommend that you
do not use the legacy java.sql.Time/Timestamp/Date types, but instead use
java.time.LocalTime/LocalDateTime/LocalDate.

The remainder of this section only applies to Jaybird 4 and higher.

By default, Jaybird 4 and higher will use the JVM default time zone as reported by
java.util.TimeZone.getDefault().getID() as the session time zone. Using the JVM default time zone
as the default is the best option in the light of JDBC requirements with regard to java.sql.Time and
java.sql.Timestamp using the JVM default time zone.

To use the default server time zone and the Jaybird 3 and earlier behaviour to use the JVM default
time zone, set the connection property to server. This will result in the conversion behaviour of
Jaybird 3 and earlier. Be aware that this is inconsistent if Firebird and Java are in different time
zones.

Firebird session time zone

Since: Firebird 4.0

The session time zone is used for conversion between WITH TIME ZONE values and WITHOUT TIME ZONE
values (i.e. using cast or with legacy time zone bind), and for the value of LOCALTIME, LOCALTIMESTAMP,
CURRENT_TIME and CURRENT_TIMESTAMP, and other uses of the session time zone as documented in the
Firebird 4.0 documentation.

The value of sessionTimeZone must be supported by Firebird 4.0. It is possible that time zone
identifiers used by Java are not supported by Firebird. If Firebird does not know the session time

Chapter 12. Datatype reference

131

zone, error (Invalid time zone region: <zone name>) is reported on connect.

In Jaybird 4 and higher, Jaybird will apply the JVM default time zone as the default session time
zone. The use of the JVM default time zone as the default session time zone will result in subtly
different behaviour compared to previous versions of Jaybird and — even with Jaybird 4 — Firebird
3.0 or earlier, as current time values like LOCALTIMESTAMP (etc) will now reflect the time in the JVM
time zone, and not the server time zone rebased on the JVM default time zone.

As an example, with a Firebird in Europe/London and a Java application in Europe/Amsterdam
with Firebird time 12:00, in Jaybird 3, the Java application will report this time as 12:00, in Jaybird 4
with Firebird 4.0, this will now report 13:00, as that is the time in Amsterdam if it is 12:00 in
London (ignoring potential DST start/end differences).

Other examples include values generated in triggers and default value clauses.

Session time zone for conversion

For WITHOUT TIME ZONE types, the session time zone will be used to derive the java.sql.Time,
java.sql.Timestamp and java.sql.Date values. This is also done for Firebird 3.0 and earlier.

If Java does not know the session time zone, no error is reported, but when retrieving
java.sql.Time, java.sql.Timestamp or java.sql.Date a warning is logged and conversion will happen
in GMT, which might yield unexpected values.

We strongly suggest that you use java.time.LocalTime, java.time.LocalDateTime and
java.time.LocalDate types instead of these legacy datetime types.

For WITH TIME ZONE types, the session time zone has no effect on the conversion to the legacy JDBC
date/time types: the offset date/time is converted to epoch milliseconds and used to construct these
legacy types directly.

Executing SET TIME ZONE <zone name> statements after connect will change the session time zone on
the server, but Jaybird will continue to use the session time zone set in the connection property for
these conversions.

Time zone support for CONVERT

Although not defined in JDBC (or ODBC), Jaybird has added a non-standard extension to the CONVERT
JDBC escape to allow conversion to the time zone types.

In addition to the standard-defined types, it also supports the type names TIME_WITH_TIME_ZONE,
TIME_WITH_TIMEZONE, TIMESTAMP_WITH_TIME_ZONE and TIMESTAMP_WITH_TIMEZONE (and the same with the
SQL_ prefix).

Caveats for time zone types

• Time zone fields do not support java.time.LocalDate, java.time.LocalTime,
java.time.LocalDateTime.

• Firebird 4.0 redefines CURRENT_TIME and CURRENT_TIMESTAMP to return a WITH TIME ZONE type. Use
LOCALTIME and LOCALTIMESTAMP (introduced in Firebird 2.5.9 and Firebird 3.0.4) if you want to

Chapter 12. Datatype reference

132

ensure a WITHOUT TIME ZONE type is used.

• The database metadata will always return JDBC 4.2 compatible information on time zone types,
even on Java 7, and even when legacy time zone bind is set. For Java 7 compatibility the JDBC
4.2 java.sql.Types constants TIME_WITH_TIMEZONE and TIMESTAMP_WITH_TIMEZONE are also defined in
org.firebirdsql.jdbc.JaybirdTypeCodes.

• The default sessionTimeZone is set to the JVM default time zone, this may result in different
application behavior for DATE, TIME and TIMESTAMP, including values generated in triggers and
default value clauses. To prevent this, either switch those types to a WITH TIME ZONE type, or set
the sessionTimeZone to server or to the actual time zone of the Firebird server.

• As CURRENT_TIME uses the session time zone, which usually is a named zone, use in combination
with java.time.OffsetTime can yield confusing results. For example, if the current date and time
is '2020-07-01T14:51:00 Europe/Amsterdam', then retrieving CURRENT_TIME as an OffsetTime will
return the value '14:51:00+01:00', and not '14:51:00+02:00'.
It is recommended to avoid CURRENT_TIME and use CURRENT_TIMESTAMP instead.

• Overall, using TIME WITH TIME ZONE with named zones is rather fragile and prone to
interpretation errors. This is a result of how this is implemented in Firebird: values are stored
at UTC with their offset or named zones, where derivation of the time in the named zone needs
to use 2020-01-01 as the date for the time zone rules to apply.
We recommend avoiding TIME WITH TIME ZONE where possible.

12.4. Decimal floating point type DECFLOAT
Since: Firebird 4.0

Firebird 4.0 introduces the SQL:2016 DECFLOAT datatype, a decimal floating point with a precision of
16 or 34 digits (backed by an IEEE-754 Decimal64 or Decimal128). See the Firebird 4.0
documentation for details on this datatype.

12.4.1. Decfloat support in Jaybird 4 and higher

Jaybird 4 introduced support for the DECFLOAT datatype mapping to java.math.BigDecimal. For more
information, see DECFLOAT support.

12.4.2. Workarounds for Jaybird 3

Jaybird 3 does not support DECFLOAT, but starting with Jaybird 3.0.9, the connection property
dataTypeBind can be used to convert to a datatype that is supported by Jaybird.

We recommend either dataTypeBind=decfloat to varchar or dataTypeBind=decfloat to double
precision. Option varchar has our preference as it is able to support the full range of values of the
DECFLOAT types.

See Defining decfloat data type bind for details.

For earlier Jaybird 3 versions, you can use the SET BIND OF DECFLOAT TO <target-type> statement to
configure your connection to map DECFLOAT to a different datatype. When set, Firebird will present
columns or parameters of DECFLOAT as the specified type, allowing clients without support for

Chapter 12. Datatype reference

133

DECFLOAT to read or set values.

The available options are the same as documented in Defining decfloat data type bind

For example

try (Connection connection = DriverManager.getConnection(..);
 Statement stmt = connection.createStatement()) {
 stmt.execute("SET BIND OF DECFLOAT TO varchar");
 // DECFLOAT will now be mapped to a VARCHAR datatype
}


The effect of the SET BIND statement will be reset to the default when ALTER SESSION
RESET is executed.

12.4.3. Defining decfloat data type bind

Jaybird 3.0.9 added the connection property dataTypeBind to defining data type mappings. This can
be used to configure conversion of DECFLOAT to a different datatype. When set Firebird will present
columns or parameters of DECFLOAT as the specified type, allowing clients without support for
DECFLOAT to read or set values.


This property is also available in Jaybird 4, but we recommend to not use this
property in Jaybird 4 and instead rely on the default behaviour (native) and
support for DECFLOAT.

To map DECFLOAT(16) and DECFLOAT(34) to a string type, you can use:

Map all decfloat types to string

Properties props = new Properties();
props.setProperty("dataTypeBind", "decfloat to varchar"

To map DECFLOAT(16) to DOUBLE PRECISION and DECFLOAT(34) to string, you can use:

Map all decfloat types to string

Properties props = new Properties();
props.setProperty("dataTypeBind", "decfloat(16) to double precision;decfloat(34) to
varchar"

Firebird will convert a DECFLOAT type to the specified type using a cast to derive the value.

Result set columns and parameters on prepared statements will behave as the defined type. This
conversion is not applied to the database metadata which will always report DECFLOAT information.

In general, we recommend binding to VARCHAR as this will allow you to get (and set) the full range of
DECFLOAT values with precision.

Chapter 12. Datatype reference

134

See also Data type bind support.

12.4.4. DECFLOAT support

Jaybird 4 introduced support for the DECFLOAT datatype. The 'default' object type for DECFLOAT is a
java.math.BigDecimal, but conversion from and to the following datatypes is supported:

• java.math.BigDecimal (see note 1)

• byte (valid range -128 to 127(!); see notes 2, 3)

• short (valid range -32768 to 32767; see note 3)

• int (valid range -231 to 231-1; see note 3)

• long (valid range -263 to 263-1; see notes 3, 4)

• float (valid range -1 * Float.MAX_VALUE to Float.MAX_VALUE; see notes 5, 6, 7, 8, 9)

• double (valid range -1 * Double.MAX_VALUE to Double.MAX_VALUE; see notes 6, 7, 8, 9)

• boolean (see notes 10, 11)

• java.lang.String (see notes 12, 13, 14)

• java.math.BigInteger (see notes 15, 16)

• org.firebirdsql.extern.decimal.Decimal32/64/128 (see notes 17, 18)

The DECFLOAT type is not yet defined in the JDBC specification. For the time being, Jaybird defines a
Jaybird specific type code with value -6001. This value is available through constant
org.firebirdsql.jdbc.JaybirdTypeCodes.DECFLOAT, or — for JDBC 4.2 and
higher — org.firebirdsql.jdbc.JaybirdType.DECFLOAT, which is an enum implementing
java.sql.SQLType.

If you need to use the type code, we suggest you use these constants. If a DECFLOAT type constant gets
added to the JDBC standard, we will update the value. The enum value will be deprecated when
that version of JDBC has been released.

Jaybird uses a local copy of the FirebirdSQL/decimal-java [https://github.com/FirebirdSQL/decimal-java]
library, with a custom package org.firebirdsql.extern.decimal. This to avoid additional
dependencies.

Precision and range

The DECFLOAT datatype supports values with a precision of 16 or 34 decimal digits, and an exponent
[4] between -398 and 369 (DECFLOAT(16)), or between -6176 and 6111 (DECFLOAT(34)), so the minimum
and maximum values are:

Type Min/max value Smallest (non-zero) value

DECFLOAT(16) +/-9.9..9E+384 (16 digits) +/-1E-398 (1 digit)

DECFLOAT(34) +/-9.9..9E+6144 (34 digits) +/-1E-6176 (1 digit)

When converting values from Java types to DECFLOAT and retrieving DECFLOAT values as Decimal32 or
Decimal64, the following rules are applied:

Chapter 12. Datatype reference

135

https://github.com/FirebirdSQL/decimal-java

• Zero values can have a non-zero exponent, and if the exponent is out of range, the exponent
value is 'clamped' to the minimum or maximum exponent supported. This behavior is subject to
change, and future releases may 'round' to exact 0 (or 0E0)

• Values with a precision larger than the target precision are rounded to the target precision
using RoundingMode.HALF_EVEN

• If the magnitude (or exponent) is too low, then the following steps are applied:

1. Precision is reduced applying RoundingMode.HALF_EVEN, increasing the exponent by the
reduction of precision.

An example: a DECFLOAT(16) stores values as an integral coefficient of 16 digits and an
exponent between -398 and +369. The value 1.234567890123456E-394 or 1234567890123456E-409
is coefficient 1234567890123456 and exponent -409. The coefficient is 16 digits, but the
exponent is too low by 11.

If we sacrifice least-significant digits, we can increase the exponent, this is achieved by
dividing the coefficient by 1011 (and rounding) and increasing the exponent by 11. We get
exponent = round(1234567890123456 / 1011) = 12346 and exponent = -409 + 11 = -398.

The resulting value is now 12346E-398 or 1.2346E-394, or in other words, we sacrificed
precision to make the value fit.

2. If after the previous step, the magnitude is still too low, we have what is called an underflow,
and the value is truncated to 0 with the minimum exponent and preserving sign, e.g. for
DECFLOAT(16), the value will become +0E+398 or -0E-398 (see note 19). Technically, this is just
a special case of the previous step.

• If the magnitude (or exponent) is too high, then the following steps are applied:

1. If the precision is less than maximum precision, and the difference between maximum
precision and actual precision is larger than or equal to the difference between the actual
exponent and the maximum exponent, then the precision is increased by adding zeroes as
least-significant digits and decreasing the exponent by the number of zeroes added.

An example: a DECFLOAT(16) stores values as an integral coefficient of 16 digits and an
exponent between -398 and +369. The value 1E+384 is coefficient 1 with exponent 384. This is
too large for the maximum exponent, however, we have a value with a single digit, leaving
us with 15 'unused' most-significant digits.

If we multiply the coefficient by 1015 and subtract 15 from the exponent we get: coefficient =
1 * 1015 = 1000000000000000 and exponent = 384 - 15 = 369. And these values for coefficient
and exponent are in range of the storage requirements.

The resulting value is now 1000000000000000E+369 or 1.000000000000000E+384, or in other
words, we 'increased' precision by adding zeroes as least-significant digits to make the value
fit.

2. Otherwise, we have what is called an overflow, and an SQLException is thrown as the value is
out of range.

If you need other rounding and overflow behavior, make sure you round the values appropriately

Chapter 12. Datatype reference

136

before you set them.

Configuring decfloat traps and rounding

To configure the server-side(!) error and rounding behaviour of the DECFLOAT data types, you can
configure use the following connection properties:

• decfloatRound (alias: decfloat_round)

Possible values: ceiling, up, half_up (default), half_even, half_down, down, floor, reround

• decfloatTraps (alias: decfloat_traps)

Comma-separated list with options: Division_by_zero (default), Inexact, Invalid_operation
(default), Overflow (default), Underflow

Configuring these options does not change driver behaviour, only server-side behaviour.

Notes

1. java.math.BigDecimal is capable of representing numbers with larger precisions than DECFLOAT,
and numbers that are out of range (too large or too small). When performing calculations in
Java, use MathContext.DECIMAL64 (for DECFLOAT(16)) or MathContext.DECIMAL128 (for DECFLOAT(34))
to achieve similar results in calculations as in Firebird. Be aware there might still be differences
in rounding, and the result of calculations may be out of range.

1. Firebird 4.0 currently allows storing NaN and Infinity values, retrieval of these values will
result in a SQLException, with a DecimalInconvertibleException cause with details on the
special. The support for these special values is currently under discussion and may be
removed in future Firebird versions.

2. byte in Java is signed, and historically Jaybird has preserved sign when storing byte values, and
it considers values outside -128 and +127 out of range.

3. All integral values are — if within range — first converted to long using BigDecimal.longValue(),
which discards any fractional parts (rounding by truncation).

4. When storing a long in DECFLOAT(16), rounding will be applied using RoundingMode.HALF_EVEN for
values larger than 9999999999999999L or smaller than -9999999999999999L.

5. float values are first converted to (or from) double, this may lead to small rounding differences

6. float and double can be fully stored in DECFLOAT(16) and DECLOAT(34), with minor rounding
differences.

7. When reading DECFLOAT values as double or float, rounding will be applied as binary floating
point types are inexact, and have a smaller precision.

8. If the magnitude of the DECFLOAT value is too great to be represented in float or double, +Infinity
or -Infinity may be returned (see BigDecimal.doubleValue()). This behavior is subject to change,
future releases may throw a SQLException instead, see also related note 9.

9. Storing and retrieving values NaN, +Infinity and -Infinity are currently supported, but this may
change as this doesn’t seem to be allowed by the SQL:2016 standard.

Chapter 12. Datatype reference

137

It is possible that Jaybird or Firebird will disallow storing and retrieving NaN and Infinity
values in future releases, causing Jaybird to throw an SQLException instead. We strongly suggest
not to rely on this support for special values.

1. Firebird DECFLOAT currently discerns four different NaNs (+/-NaN and +/-signaling-NaN).
These are all mapped to Double.NaN (or Float.NaN), Java NaN values are mapped to +NaN in
Firebird.

10. Setting boolean values will set 0 (or 0E+0) for false and 1 (or 1E+0) for true.

11. Retrieving as boolean will return true for 1 (exactly 1E+0) and false for all other values. Be
aware that this means that 1.0E+0 (or 10E-1) etc will be false.

This behavior may change in the future and only allow 0 for false and exactly 1 for true and
throw an SQLException for all other values, or maybe true for everything other than 0. In
general, we advise to not use numerical types for boolean values, and especially not to retrieve
the result of a calculation as a boolean value. Instead, use a real BOOLEAN.

12. Setting values as String is supported following the format rules of new BigDecimal(String), with
extra support for special values +NaN, -NaN, +sNaN, -sNaN, +Infinity and -Infinity (case-
insensitive). Other non-numerical strings throw an SQLException with a NumberFormatException as
cause. Out of range values are handled as described in Precision and range.

13. Getting values as String will be equivalent to BigDecimal.toString(), with extra support for the
special values mentioned in the previous note.

14. As mentioned in earlier notes, support for the special values is under discussion, and may
change in future versions of Firebird and/or Jaybird.

15. Getting as BigInteger will behave as BigDecimal.toBigInteger(), which discards the fractional
part (rounding by truncation), and may add (-1 * scale - precision) least-significant zeroes if
the scale exceeds precision. Be aware that use of BigInteger for large values may result in
significant memory consumption.

16. Setting as BigInteger will lose precision for values with more digits than the target type. It
applies the rules described in Precision and range.

17. Values can also be set and retrieved as types Decimal32, Decimal64 and Decimal128 from the
org.firebirdsql.extern.decimal package. Where Decimal64 exactly matches the DECFLOAT(16)
protocol format, and Decimal128 the DECFLOAT(34) protocol format. Be aware that this is an
implementation detail that might change in future Jaybird versions (both in terms of support
for these types, and in terms of the interface (API) of these types).

18. Setting a Decimal128 on a DECFLOAT(16), or a Decimal32 on a DECFLOAT(16) or DECFLOAT(34), or
retrieving a Decimal32 from a DECFLOAT(16) or DECFLOAT(34), or a Decimal64 from a DECFLOAT(34)
will apply the rules described in Precision and range.

19. Zero values can have a sign (e.g. -0 vs 0 (+0)), this can only be set or retrieved using String or the
DecimalXX types, or the result of rounding. This behaviour is subject to change, and future
releases may 'round' to 0 (a.k.a. +0).

Chapter 12. Datatype reference

138

12.5. Exact numeric types DECIMAL/NUMERIC
The JDBC types DECIMAL and NUMERIC are supported by Firebird and Jaybird and map to
java.math.BigDecimal.


Behaviour in Firebird of NUMERIC is closer to the SQL standard DECIMAL behaviour.
The precision specified is the minimum precison, not the exact precision.

12.5.1. Precision and range

In Firebird 3.0 and earlier, the maximum precision of DECIMAL and NUMERIC is 18 with a maximum
scale of 18.[5]

Since: Firebird 4.0 In Firebird 4.0 the maximum precision and scale of DECIMAL and NUMERIC have
been raised to 38. Any NUMERIC or DECIMAL with a precision between 19 and 38 will allow storage up
to a precision of 38.

In the implementation in Firebird, this extended precision is backed by an Int128.

Values set on a field or parameter will be rounded to the target scale of the field using
RoundingMode.HALF_EVEN. Values exceeding a precision of 38 after rounding will be rejected with a
TypeConversionException.

12.6. Type INT128
Since: Firebird 4.0

Firebird 4.0 introduced the non-standard type INT128, a signed 128 bit number.

12.6.1. Support for INT128

Since: Jaybird 4.0.1

Jaybird 4.0.1 introduced support for the INT128 type. Jaybird 4.0.0 will also be able to handle the
type, but does not formally identify it as INT128.

As JDBC does not define an INT128 type, Jaybird maps the Firebird type INT128 to the JDBC type
NUMERIC with precision of 38. This way most tools should be able to handle the full range of values of
without issue.

For details on numeric, see Exact numeric types DECIMAL/NUMERIC.

The introduction of this type is specified by jdp-2020-08 Int128 support [https://github.com/FirebirdSQL/

jaybird/blob/master/devdoc/jdp/jdp-2020-08-int128-support.md].

[1] This behaviour may change in a future version to the equivalent of setLong((long) value)

[2] This behaviour may change in a future version to the equivalent of getLong(..) == 1L

[3] This behaviour may change in a future version to use compareTo or the equivalent of getLong(..) == 1L instead

[4] The DECFLOAT decimal format stores values as sign, integral number with 16 or 34 digits, and an exponent. This is similar to
java.math.BigDecimal, but instead of an exponent, that uses the concept scale, where scale = -1 * exponent.

Chapter 12. Datatype reference

139

https://github.com/FirebirdSQL/jaybird/blob/master/devdoc/jdp/jdp-2020-08-int128-support.md

[5] In practice, values with precision 19 are possible up to the maximum value of the BIGINT backing the value.

Chapter 12. Datatype reference

140

Appendices

141

142

Appendix A: Extended connection properties
Jaybird has a number of connection properties that can be used to configure a connection.

This appendix provides a list of most connection properties and a short explanation to each of
them. The properties listed below are usable as JDBC connection properties.

The properties marked as boolean property can be included in the JDBC URL with values true, false
(Since: Jaybird 5), but also without a value, or with an empty value (which will both signify true).
For readability, we suggest that you only specify these properties explicitly when you want to
enable or disable them, and if you do, to use explicit values like true or false.

In Jaybird 4 and earlier, the default for all boolean properties is false.
In Jaybird 5 and higher, the default of boolean properties varies (but unless explicitly mentioned,
the default is false).

A subset of these properties is also exposed in the javax.sql.DataSource implementations in Jaybird.
When using data sources, unexposed properties can be set using setNonStandardProperty.

A.1. Authentication and security properties
Connection property (+
aliases)

Explanation

user
userName, user_name,
isc_dpb_user_name

Name of the user for the connection.

password
isc_dpb_password

Password corresponding to the specified user.

roleName
sqlRole, sql_role_name,
isc_dpb_sql_role_name

Name of the SQL role for the specified connection.

authPlugins
auth_plugin_list

Jaybird specific property. The comma-separated list of
authentication plugins to try. See Authentication plugins for
more information.
Default: Srp256,Srp

wireCrypt Jaybird specific property. Allowed values: DEFAULT, ENABLED,
REQUIRED, DISABLED (case-insensitive). Configures Firebird 3.0 and
higher wire encryption behaviour. See Wire encryption support
for more information.
Default: DEFAULT.

dbCryptConfig Jaybird specific property. Configures Firebird 3.0 and higher
database encryption support. See Database encryption support
for more information.

processId
process_id, isc_dpb_process_id

Specifies the process id reported to Firebird. See Process
information for more information.

Appendix A: Extended connection properties

143

Connection property (+
aliases)

Explanation

processName
process_name,
isc_dpb_process_name,
ApplicationName (Since: Jaybird
6), applicationName (Since:
Jaybird 6)

Specifies the process name reported to Firebird. See Process
information for more information.

A.2. Other properties
Connection property (+
aliases)

Explanation

encoding
lc_ctype, isc_dpb_lc_ctype

Character encoding for the connection using the Firebird
character set name. This property tells the database server the
encoding in which it expects character content. For a list of the
available encodings see Available Encodings.
In general, only specify charSet or encoding, not both.
Default: NONE (unless charSet is specified).

charSet
localEncoding, charset (Since:
Jaybird 5)

Jaybird specific property. Character set for the connection using
Java character set name. Similar to the previous property, but
instead of Firebird-specific name accepts a Java character set
name.
In general, only specify charSet or encoding, not both.

sqlDialect
dialect, sql_dialect,
isc_dpb_sql_dialect

SQL dialect, can be 1, 2 or 3.
Default: 3

defaultHoldable
defaultResultSetHoldable

Jaybird specific property. Boolean property. Set result sets to be
holdable by default. A workaround for applications with
incorrect assumptions on result sets in auto-commit mode. See
Default holdable result sets for more information.

useFirebirdAutocommit Jaybird specific property. Boolean property. Enable experimental
feature to use Firebird auto-commit for JDBC auto-commit mode.
Do not use this unless you really know what you’re doing. See
Firebird auto commit mode (experimental) for more
information.

generatedKeysEnabled Jaybird specific property. Configure generated keys support
behaviour. See Configuring generated keys support for more
information.

Appendix A: Extended connection properties

144

Connection property (+
aliases)

Explanation

isolation
defaultIsolation

Jaybird specific property. Specify the default transaction isolation
level. Accepted values are: TRANSACTION_NONE,
TRANSACTION_READ_UNCOMMITTED, TRANSACTION_READ_COMMITTED,
TRANSACTION_REPEATABLE_READ, TRANSACTION_SERIALIZABLE (case-
sensitive). Although TRANSACTION_NONE and
TRANSACTION_READ_UNCOMMITTED are allowed values, these behave
the same as TRANSACTION_READ_COMMITTED.
Default: TRANSACTION_READ_COMMITTED

socketBufferSize
socket_buffer_size

Jaybird specific property. Size in bytes of the socket buffer. Only
has effect on Type 4 (pure Java) connections. Can be used for
performance tuning, or when the default socket buffer provided
by the JVM or OS is not correct (e.g. too small).

blobBufferSize
blob_buffer_size

Jaybird specific property. Size in bytes of the buffer used to
transfer BLOB content. Specifying a size greater than 65535 may
result in additional server roundtrips per read, but may also
waste memory for larger buffers than used in some cases. Values
lower than 512 will use 512 (Since: Jaybird 6).
Default: 16384

soTimeout Jaybird specific property. Socket blocking timeout in
milliseconds. Only has effect on Type 4 (pure Java) connections.

connectTimeout
connect_timeout,
isc_dpb_connect_timeout

Connect timeout in seconds. For Type 4 (pure Java) connections,
the connect timeout will detect unreachable hosts. For Type 2
(native) connections, the connect timeout works as the DPB item
isc_dpb_connect_timeout which only works after connecting to
the server for the op_accept phase of the protocol. This means
that for native connections the connect timeout will not detect
unreachable hosts within the timeout.

wireCompression Jaybird specific property (Since: Firebird 3.0). Boolean property.
Enables zlib wire compression. See Wire compression for more
information.

columnLabelForName Jaybird specific property. Boolean property. Backwards-
compatible behaviour of getColumnName() (return the column
label instead of the column name). Don’t set the property or set it
to false for JDBC-compliant behaviour (recommended).

useStreamBlobs
use_stream_blobs

Jaybird specific property. Boolean property. BLOBs are created as
stream BLOBs.
Default: Jaybird 5 and higher: true (stream BLOBS)
Jaybird 4 and earlier: false (segmented BLOBs)

Appendix A: Extended connection properties

145

Connection property (+
aliases)

Explanation

ignoreProcedureType Jaybird specific property. Boolean property. Value true disables
usage of procedure type metadata to decide to use SELECT for
selectable procedure instead of EXECUTE PROCEDURE. See
Connection property ignoreProcedureType for more
information.

scrollableCursor Jaybird specific property (Since: Jaybird 5 Since: Firebird 5.0).
Allowed values: EMULATED, SERVER (case-insensitive) Configures use
of server-side scrollable cursors (Firebird 5.0 and higher, pure
Java connections only). See Connection property scrollableCursor
for more information.
Default: EMULATED

useServerBatch Jaybird specific property (Since: Jaybird 5 Since: Firebird 4.0).
Boolean property. Value true enables server-side batch if
available (Firebird 4.0 and higher, pure Java connection only).
Set to false to always use emulated batch updates. See
Connection property useServerBatch for more information.
Default value: true

serverBatchBufferSize Jaybird specific property (Since: Jaybird 5 Since: Firebird 4.0).
Size in bytes of the server-side batch buffer. Value < 0 — server-
side default, 0 — server-side maximum, > 0 — size (capped at
server-side maximum) See Connection property
serverBatchBufferSize for more information.
Default value: 0

dataTypeBind
set_bind

Defines data type bind from one type to a different type. (Since:
Firebird 4.0) Multiple bind definitions are separated by
semicolons. When used in a JDBC url, the semicolon must be
escaped using %3B. See Data type bind support for more
information.

sessionTimeZone Configures the session time zone. In Jaybird 3, only configures
the Firebird 4 server-side session time zone. In Jaybird 4 and
higher, also configures the time zone used for legacy datetime
conversion on all Firebird versions. See Connection property
sessionTimeZone for more information.
Default: the JVM default time zone (Jaybird 4 or higher), or not
set (Jaybird 3 or earlier)

decfloatRound
decfloat_round

Defines server-side rounding behaviour for DECFLOAT data types
(Since: Firebird 4.0) Possible values: ceiling, up, half_up (default),
half_even, half_down, down, floor, reround See Configuring decfloat
traps and rounding for more information.

Appendix A: Extended connection properties

146

Connection property (+
aliases)

Explanation

decfloatTraps
decfloat_traps

Defines server-side error behaviour for DECFLOAT data types
(Since: Firebird 4.0) Comma-separated list with options:
Division_by_zero (default), Inexact, Invalid_operation (default),
Overflow (default), Underflow See Configuring decfloat traps and
rounding for more information.

useStandarUdf
use_standard_udf

Jaybird specific property (Removed in: Jaybird 5). Boolean
property. Tells the JDBC driver to assume that standard UDF
library is registered in the database when converting escaped
function calls. With recent versions of Firebird, it is advisable to
not specify this property and rely on the built-in functions
instead. See Supported JDBC Scalar Functions for more
information.

timestampUsesLocalTimezone Jaybird specific property (Removed in: Jaybird 6). Boolean
property. Changes how getTime/getTimestamp methods accepting a
java.util.Calendar apply the calendar offset in calculations.

num_buffers
isc_dpb_num_buffers

Number of database pages that will be cached. Overrides server
or database default for this specific connection. Use with care to
avoid using an excessive amount of memory.

set_db_readonly
isc_dpb_set_db_readonly

Boolean property. Set the database into read-only state.

set_db_sql_dialect
isc_dpb_set_db_sql_dialect

Set the SQL dialect of the database.

set_db_charset
isc_dpb_set_db_charset

Set the default character set of the database.

enableProtocol Jaybird specific property (Since: Jaybird 6). Enable unsupported
protocol versions, if available. Comma-separated list of protocol
versions to enable in addition to the supported protocol versions.
The value "*" will enable all available protocol versions. See
Enabling unsupported protocol versions for more information.

parallelWorkers
parallel_workers,
isc_dpb_parallel_workers

The number of parallel workers to use (Since: Jaybird 5.0.2
Since: Firebird 5.0)

Appendix A: Extended connection properties

147

Connection property (+
aliases)

Explanation

nativeLibraryPath Jaybird specific property (Since: Jaybird 6).

Specifies a directory to try and load the client library for native
(fbclient) or embedded (fbembed or fbclient) connections. If a
file name is specified instead of a directory name, the parent
directory will be used.



This property only works for the first native or
embedded connection (to a database or service)
created inside a JVM. Any subsequent
connection uses the library that was loaded by
the first connection.

useCatalogAsPackage Jaybird specific property (Since: Jaybird 6 Since: Firebird 3.0).
Boolean property. Enables support for reporting database
metadata information on packages, and functions and stored
procedures in packages. See Opt-in feature for package
information in DatabaseMetaData for more information.

In addition, Jaybird allows using arbitrary Database Parameters Block entries as connection
properties (provided they are defined in Jaybird’s DpbItems and SpbItems (Since: Jaybird 5), or
ISCConstants (Removed in: Jaybird 5)). The current Firebird API has over 100 DPB parameters,
however only few of them are interesting for regular users. If a DPB item called isc_dpb_XXX exists,
then Jaybird allows these to be specified as isc_dpb_XXX and XXX. By default properties are mapped
as string DPB items. If a DPB item requires another type, it will need to be explicitly defined in
Jaybird.

A.3. Transaction isolation levels
It is possible to redefine the transaction isolation levels through connection properties.

Connection property Explanation

TRANSACTION_READ_COMMITTED Specify the definition of transaction isolation level
READ_COMMITTED.
Default:
isc_tpb_read_committed,isc_tpb_rec_version,isc_tpb_write,isc_t
pb_wait

TRANSACTION_REPEATABLE_READ Specify the definition of transaction isolation level
REPEATABLE_READ.
Default: isc_tpb_concurrency,isc_tpb_write,isc_tpb_wait

TRANSACTION_SERIALIZABLE Specify the definition of transaction isolation level
TRANSACTION_SERIALIZABLE.
Default: isc_tpb_consistency,isc_tpb_write,isc_tpb_wait

For data sources, this feature is exposed using a definition properties file and the setTpbMapping

Appendix A: Extended connection properties

148

property. See Transaction Isolation Levels for more information.

Appendix A: Extended connection properties

149

Appendix A: Extended connection properties

150

Appendix B: System properties
Jaybird provides a number of system properties to control global behaviour of Jaybird.

B.1. Logging
Removed in: Jaybird 6

To configure logging, the following system properties are available. See Logging for details.

org.firebirdsql.jdbc.forceConsoleLogger

Set to true to force logging to console (System.out for info, System.err for warn, error and fatal)
instead of default java.util.logging

org.firebirdsql.jdbc.disableLogging

Set to true to disable logging

org.firebirdsql.jdbc.loggerImplementation

Fully-qualified name of org.firebirdsql.logging.Logger implementation to use for logging

These properties need to be set before Jaybird is loaded and used.

 These properties are not available in Jaybird 6 or later.

B.2. Process information
For Firebird 2.1 and higher, Jaybird can provide Firebird with process information. This
information can be specified in connection properties, or globally using the following system
properties.

org.firebirdsql.jdbc.processName

Process name to send to Firebird

org.firebirdsql.jdbc.pid

PID to send to Firebird (must be a valid integer)

The property values are read for each connect, so the value can be changed at any time.

B.3. Character set defaults
The following system properties control character set behaviour for connections.

org.firebirdsql.jdbc.defaultConnectionEncoding

Firebird character set name to use as connection character set when no explicit connection
character set is configured (defaults to NONE when not set)

Appendix B: System properties

151

org.firebirdsql.jdbc.requireConnectionEncoding

Set to true to disallow connections without an explicit connection character set. This property
will have no effect if org.firebirdsql.jdbc.defaultConnectionEncoding has been set.

The property values are read for each connect, so the value can be changed at any time.

B.4. Wire protocol buffer sizes
Since: Jaybird 6

The following system properties control the sizes of a number of buffers used by Jaybird’s wire
protocol implementation.

org.firebirdsql.wire.deflateBufferSize

Buffer size in bytes for deflate (compression). Has a minimum size of 512 and a default value of
8192.

org.firebirdsql.wire.inflateBufferSize

Buffer size in bytes for inflate (decompression). Has a minimum size of 512 and a default value
of 8192.

org.firebirdsql.wire.decryptBufferSize

Buffer size in bytes for decryption. Has a minimum size of 512 and a default value 8192.


As the decryption input buffer determines the size of the decryption output
buffer, the actual allocation is up to twice the specified value.

org.firebirdsql.wire.inputBufferSize

Buffer size in bytes for reading data from the socket. Has a minimum size of 1024 and a default
value of 16384.


This property should not be confused with the socket buffer size (configurable
with the socketBufferSize connection property). Setting this value higher than
socketBufferSize is unlikely to have any benefits.

org.firebirdsql.wire.outputBufferSize

Buffer size in bytes for writing data. Has a minimum size of 1024 and a default value of 32767.


This property should not be confused with the socket buffer size (configurable
with the socketBufferSize connection property). Contrary to the input buffer
size, setting it higher than socketBufferSize might have performance benefits.

These properties need to be set before Jaybird is loaded and used.


The minimum sizes and default values should be considered an implementation
detail and might change in a future major version.

Appendix B: System properties

152

The “deflate” and “inflate” buffers are only used when wire compression is
enabled. The “decrypt” buffer is only applied when wire encryption is used (the
default with Firebird 3.0 and higher).

The order of buffers for input is as follows:

Jaybird ⇐ [inflate ⇐] [decrypt ⇐] input ⇐ socket

The order of buffers for output is as follows:

Jaybird ⇒ output [⇒ deflate] ⇒ socket

B.5. Other properties
The following system properties control other global behaviour of Jaybird.

org.firebirdsql.jna.syncWrapNativeLibrary

Set to true to add a synchronization proxy around the native client library.

org.firebirdsql.datatypeCoderCacheSize

Integer value for the number of encoding specific data type coders cached (default and
minimum is 1). Setting to a higher value may improve performance, most common use case is
connection character set NONE with a database that uses more than one character set for its
columns. Jaybird will log a warning ("Cleared encoding specific datatype coder cache [..]") when
the cache size was exceeded.

org.firebirdsql.nativeResourceShutdownDisabled

Set to true to disable automatic shutdown and unload of native libraries and other native
resources. Normally you should only use this if the automatic shutdown misbehaves and causes
application errors. If you need to set this to true, we’d appreciate it if you post a message to the
firebird-java Google Group [https://groups.google.com/g/firebird-java] with details on why you needed
to enable this, so we can improve or fix this feature.

These properties need to be set before Jaybird is loaded and used. Technically,
org.firebirdsql.jna.syncWrapNativeLibrary is dynamic, but a native library will usually be loaded
once.

B.6. Useful Java system properties
The following Java system properties are relevant for Jaybird.

jdk.net.useFastTcpLoopback

Since: Firebird 3.0.2 Removed in: Firebird 5.0 Since: Jave 8 update 60 Since: Windows 8 /
Windows Server 2012 Set to true on Windows to enable “TCP Loopback Fast Path”
(SIO_LOOPBACK_FAST_PATH socket option). “TCP Loopback Fast Path” can improve performance for

Appendix B: System properties

153

https://groups.google.com/g/firebird-java

localhost connections.
Java only has an 'all-or-nothing' support for the “TCP Loopback Fast Path”, so Jaybird cannot
enable this for you: you must specify this property on JVM startup. This has the benefit that this
works for all Jaybird versions, as long as you use Java 8 update 60 or higher (and Firebird 3.0.2
or higher).



Microsoft has deprecated the SIO_LOOPBACK_FAST_PATH and recommends not to
use it.

Support was removed in Firebird 5.0.

Appendix B: System properties

154

Appendix C: Data Type Conversion Table

C.1. Mapping between JDBC, Firebird and Java Types
The below table describes a mapping of the JDBC data types defined in java.sql.Types class to the
Firebird data types. Also, for each JDBC data type a class instance of which is returned by
ResultSet.getObject method is provided.

JDBC Type Firebird Type Java Object Type

CHAR CHAR String

VARCHAR VARCHAR String

LONGVARCHAR BLOB SUB_TYPE TEXT String

NUMERIC NUMERIC
INT128

java.math.BigDecimal

DECIMAL DECIMAL java.math.BigDecimal

SMALLINT SMALLINT Integer

INTEGER INTEGER Integer

BIGINT BIGINT Long

REAL [1]

FLOAT FLOAT Double

DOUBLE DOUBLE PRECISION Double

BINARY CHAR CHARACTER SET OCTETS
BINARY (Since: Firebird 4.0)

byte[]

VARBINARY VARCHAR CHARACTER SET OCTETS
VARBINARY (Since: Firebird 4.0)

byte[]

LONGVARBINARY BLOB SUB_TYPE BINARY byte[]

DATE DATE java.sql.Date

TIME TIME java.sql.Time

TIME_WITH_TIMEZONE TIME WITH TIME ZONE (Since:
Firebird 4.0)

java.time.OffsetTime

TIMESTAMP TIMESTAMP java.sql.Timestamp

TIMESTAMP_WITH_TIMEZONE TIMESTAMP WITH TIME ZONE
(Since: Firebird 4.0)

java.time.OffsetDateTime

BLOB BLOB SUB_TYPE < 0 java.sql.Blob

BOOLEAN BOOLEAN (Since: Firebird 3.0) Boolean

JaybirdTypeCodes.DECFLOAT[2] DECFLOAT (Since: Firebird 4.0) java.math.BigDecimal

C.2. Data Type Conversions
This table specifies the compatible conversions between the Firebird and Java types.

Appendix C: Data Type Conversion Table

155

SMA
LLI
NT

INT
EGE
R

BIG
INT

REA
L

FLO
AT

DOU
BLE

DEC
IMA
L

NUM
ERI
C

CHA
R

VAR
CHA
R

BLO
B
SUB
_TY
PE
1

BLO
B
SUB
_TY
PE
0

BLO
B
SUB
_TY
PE
< 0

DAT
E

TIM
E

TIM
EST
AMP

BOO
LEA
N

DEC
FLO
AT

String X X X X X X X X X X X X X X X X X X

BigDecimal X X X X X X X X X X X X

Boolean X X X X X X X X X X X X

Integer X X X X X X X X X X X X

Long X X X X X X X X X X X X

Float X X X X X X X X X X X X

Double X X X X X X X X X X X X

byte[] X X X

Blob X X X

Date X X

Time X

Timestamp X X

[1] A Firebird REAL is an alias for FLOAT and by default handled as java.sql.Types.FLOAT

[2] JDBC does not yet define a java.sql.Types code for DECFLOAT

Appendix C: Data Type Conversion Table

156

Appendix D: Character Encodings
Character encodings and their correct use with Firebird from Java is an important topic, that
initially seems to be complex, but in fact can be formulated by just a few rules. This appendix
provides information on this topic.

D.1. Encodings Types
Firebird uses character encodings in two different areas:

• The database encoding defines the character set in which CHAR, VARCHAR and BLOB SUB_TYPE TEXT
fields are physically stored on the disk. There is a default database encoding that is specified
during database creation. It is also possible to specify character sets on a per-column basis.

• The client connection encoding defines a character set in which client will send and expects to
receive character data. This encoding might or might not match the database default encoding.

Firebird performs translation between character sets of the client connection and the character set
of the content. The list of allowed character sets as well as the allowed translations between them
are specified in the fbintl shared library located in the intl/ directory of the Firebird
installation.[1] There is also a special character set NONE that tells Firebird not to interpret the
contents of the character field.

Firebird uses the following algorithm when performing translations:

• If source and target character sets match, send the content unchanged.

• If the target character set is NONE, send source content unchanged.

• If the source character set is NONE, send source content unchanged.

• If there is a direct translation rule between source and target character sets, use that rule.

• If there is no direct translation rule, check if there is rule to translate the source character set
into the UTF8 character set and a rule to translate from UTF8 into the target character set. If yes,
use these two rules for translation.

• If no suitable translation rule can be found, throw an exception.

D.2. Encodings in Java
The Java programming language is based on the Unicode character set and uses the UTF-16
encoding, in which each character is represented by one or two 16-bit units. Firebird, on the other
side, is not based on Unicode and allows different character sets to be assigned to different
database objects. Additionally, Firebird requires a connection character set to be specified in
connection options, which forces Firebird to convert data from the character set of the database
object into the character set of the client application.

There are two boundary cases that we will consider here, one when Firebird database was created
with default[2] character set UTF8, another when the Firebird database was created without
specifying the character set (i.e. character set NONE).

Appendix D: Character Encodings

157

The character set UTF8 is a Unicode character set that uses UTF-8 encoding and occupies from one to
four 8-bit units. Firebird has supported Unicode character set for a long time, however its
implementation was deficient in Firebird 1.5 and earlier — it did not support proper uppercasing
and correct sorting. These issues were addressed in Firebird 2.0 and at the moment nothing
prevents developers from using Unicode in the database and on the client side, which greatly
simplifies the internationalization and localization of the applications.

D.2.1. The UTF8 character set

A developer must ensure two things to enable use of Unicode characters in the database and the
application:

1. The database objects must be defined with the UTF8 character set; this can be done by either
creating database with default UTF8 character set or by adding CHARACTER SET UTF8 clause to the
column or domain definitions.

2. The encoding connection property in the JDBC driver has to be set to UTF8; this can be done in
several ways: the easiest one is to add the appropriate parameter to the JDBC URL (see the first
example), another possibility is to use appropriate method of the DriverManager class (see the
second example). Applications that use DataSource interface to obtain the database connections
also have access to the encoding property.[3]

Specifying the connection encoding in JDBC URL

Connection connection = DriverManager.getConnection(
 "jdbc:firebirdsql:localhost/3050:employee?encoding=UTF8",
 "SYSDBA", "masterkey");

Specifying connection encoding in the connection properties

Properties props = new Properties();

props.setProperty("user", "SYSDBA");
props.setProperty("password", "masterkey");
props.setProperty("encoding", "UTF8");

Connection connection = DriverManager.getConnection(
 "jdbc:firebirdsql:localhost/3050:employee", props);

There are a few limitations related to using the UTF8 character set:

• It is not possible to create Unicode columns longer than 8191 Unicode characters; this limitation
is caused by the fact that the longest possible VARCHAR column can occupy 32765 bytes (32767 for
CHAR columns) and a single UTF8 character can occupy up to four bytes.

• It is not possible to index Unicode columns longer than 1023 characters — or 2047 characters in
Firebird 4.0 with a page size of 32 kilobytes; this limitation is caused by the fact that the longest
index key cannot be longer than a quarter of the database page, which has a maximum of 16k
(Since: Firebird 4.0 32k) and the before mentioned fact that each UTF8 character can occupy up
to four bytes.

Appendix D: Character Encodings

158

It should be mentioned that using Unicode character set might cause noticeable performance
degradation when the database is accessed over wide-area networks. This mainly applies to the
cases when non-latin characters are stored in the database, as those characters will require two or
more bytes, which in turn might cause additional roundtrips to the server to fetch data.

D.2.2. The NONE character set

Java introduces additional complexity when the NONE character set is used. The reason for this is
that Java internally stores all strings in Unicode format, and the application must define the
character encoding for the byte contents to the JVM. When the NONE character set is used, Jaybird
does not know how to interpret the received data. The only choice that is left to Jaybird is to
construct a string using the default character set of the JVM, which usually matches the regional
settings of the operating system and can be accessed from within the JVM through the
file.encoding system property.

With connection character set NONE, Jaybird uses the explicit character set of CHAR, VARCHAR and BLOB
SUB_TYPE TEXT columns for the conversion. This addresses most of the problems described in this
paragraph, except for columns without an explicit character set (i.e. their character set is NONE).

It is clear that a conversion using default character set that happens inside the JVM can lead to
errors when the same content is accessed from two or more different Java Virtual Machines that
have different configuration. One application running on the computer with, for example, Russian
regional settings saves the Russian text (the default character set of the JVM is Cp1251) and another
application running on computer with German regional settings (default character set is Cp1252)
will read in such case some special or accented characters. However, when all client applications
run on the same OS with the same regional settings, in most cases this will not have any severe
consequences, except probably wrong sorting order or uppercasing on the server side.

On Linux and other Unix platforms, it might have more severe consequences as it is very common
that regional settings are not configured and that the default "C" locale is used and the non-ASCII
characters will be replaced with question marks ("?").

Therefore, application should use NONE character encoding as an encoding for a database and a
connection only when at least one of the following is met:

• Database will contain only ASCII characters,

• It is guaranteed that all Java Virtual Machines accessing the database will have the same default
encoding that can correctly handle all characters stored in the database,

• All columns have an explicit character set. When columns have an explicit character set (other
than NONE) and connection character set NONE is used, Firebird will send an identifier of the
character set of each column, and Jaybird will use that character set for the conversion.

As a partial workaround, you can specify the encoding that should be used to interpret bytes
coming from the server in the charSet connection property. The following rules are used when
interpreting the encoding and charSet properties:

• When only encoding property is specified, Jaybird uses the default mapping between server and
Java encodings. When encoding property is not set or set to NONE and charSet property is not set,
the default JVM encoding is used to interpret bytes coming from the server.

Appendix D: Character Encodings

159

• When only charSet property is specified, Jaybird uses the reverse mapping to specify the
connection encoding for the server and interprets byte stream according to the value of the
property.

• When both encoding and charSet property are specified, Jaybird sets the connection encoding
according to the value of the encoding property, but interprets the byte stream according to the
charSet property. With Jaybird 3 and higher, this option has limitations when encoding=NONE: the
conversion using charSet will only be applied for columns that don’t have an explicit character
set, otherwise that explicit character set is used for the conversion.

The last case is most powerful, but also is the most dangerous in use. When used properly, it can
solve the problems with the legacy databases; when used incorrectly, one can easily trash the
content of the database.

D.3. Available Encodings
The below table lists the available character encodings in the default Firebird distribution and their
mapping to the Java ones:

Firebird
encoding
(encoding
property)

Java encoding
(charSet
property)

Size in
bytes

Comments

NONE 1 Raw bytes, no interpretation of the content is
possible.

ASCII ASCII 1

BIG_5 Big5 2 Traditional Chinese

DOS437 Cp437 1 MS-DOS: United States, Australia, New Zeland,
South Africa

DOS737 Cp737 1 MS-DOS: Greek

DOS775 Cp775 1 MS-DOS: Baltic

DOS850 Cp850 1 MS-DOS: Latin-1

DOS852 Cp852 1 MS-DOS: Latin-2

DOS857 Cp857 1 IBM: Turkish

DOS858 Cp858 1 IBM: Latin-1 + Euro

DOS860 Cp860 1 MS-DOS: Portuguese

DOS861 Cp861 1 MS-DOS: Icelandic

DOS862 Cp862 1 IBM: Hebrew

DOS863 Cp863 1 MS-DOS: Canadian French

DOS864 Cp864 1 IBM: Arabic

DOS865 Cp865 1 MS-DOS: Nordic

Appendix D: Character Encodings

160

Firebird
encoding
(encoding
property)

Java encoding
(charSet
property)

Size in
bytes

Comments

DOS866 Cp866 1 IBM: Cyrillic

DOS869 Cp869 1 IBM: Modern Greek

EUCJ_0208 EUC_JP 2 JIS X 0201, 0208, 0212, EUC encoding, Japanese

GB_2312 EUC_CN 2 GB2312, EUC encoding, Simplified Chinese

ISO8859_1 ISO-8859-1 1 ISO 8859-1, Latin alphabet No. 1

ISO8859_2 ISO-8859-2 1 ISO 8859-2

ISO8859_3 ISO-8859-3 1 ISO 8859-3

ISO8859_4 ISO-8859-4 1 ISO 8859-4

ISO8859_5 ISO-8859-5 1 ISO 8859-5

ISO8859_6 ISO-8859-6 1 ISO 8859-6

ISO8859_7 ISO-8859-7 1 ISO 8859-7

ISO8859_8 ISO-8859-8 1 ISO 8859-8

ISO8859_9 ISO-8859-9 1 ISO 8859-9

ISO8859_13 ISO-8859-13 1 ISO 8859-13

KSC_5601 MS949 2 Windows Korean

UNICODE_FSS UTF-8 3 8-bit Unicode Transformation Format
(deprecated since Firebird 2.0)

UTF8 UTF-8 4 8-bit Unicode Transformation Format (Firebird
2.0+)

WIN1250 Cp1250 1 Windows Eastern European

WIN1251 Cp1251 1 Windows Cyrillic

WIN1252 Cp1252 1 Windows Latin-1

WIN1253 Cp1253 1 Windows Greek

WIN1254 Cp1254 1 Windows Turkish

WIN1255 Cp1255 1 Windows Hebrew

WIN1256 Cp1256 1 Windows Arabic

WIN1257 Cp1257 1 Windows Baltic

[1] On Windows this library is represented by fbintl.dll, on Linux, libfbintl.so

[2] The default character set simplifies the explanation, since we do not have to consider the cases when different columns with
different character sets are used within the same connection. The statements made here, obviously, can be applied to those cases
as well.

[3] See https://github.com/FirebirdSQL/jaybird/wiki for configuration examples of the most popular application servers.

Appendix D: Character Encodings

161

https://github.com/FirebirdSQL/jaybird/wiki

Appendix D: Character Encodings

162

Appendix E: Supported JDBC Scalar Functions
The JDBC API has an escaped syntax for numeric, string, time, date, system and conversion
functions. Jaybird will try to provide an equivalent of the JDBC function using the built-in
capabilities of the Firebird database. When no equivalent is available, Jaybird will pass the function
call "as is" to the database assuming that it contains the necessary UDF, UDR or stored function
declaration.

Not all functions described in the JDBC specification have corresponding built-in functions in
Firebird, but some are available in the standard UDF library ib_udf⁠[1] shipped with Firebird. Jaybird
provides a connection parameter use_standard_udf to configure the driver to assume that functions
from that UDF are available in the database (Removed in: Jaybird 5). In this case Jaybird will
convert all JDBC function calls into the corresponding calls of the UDF functions.

In recent Firebird versions, the number of built-in functions has been greatly increased, and
Jaybird 3 and higher can now map almost all JDBC escapes to those built-in functions. Using the
use_standard_udf is no longer advisable, especially as UDFs are now deprecated and will be
removed in a future Firebird version. Since: Jaybird 5 UDF mode (use_standard_udf) is no longer
available in Jaybird 5 and higher.

Below you will find the list of JDBC functions and whether they have a corresponding equivalent in
the "built-in" and in the "UDF" modes.

E.1. Numeric Functions
JDBC built-in UDF

mode
Description

ABS(number) X X Absolute value of number

ACOS(float) X X Arccosine, in radians, of float

ASIN(float) X X Arcsine, in radians, of float

ATAN(float) X X Arctangent, in radians, of float

ATAN2(float1, float2) X X Arctangent, in radians, of float2 / float1

CEILING(number) X X Smallest integer >= number

COS(float) X X Cosine of float radians

COT(float) X X Cotangent of float radians

DEGREES(number) X Degrees in number radians

EXP(float) X Exponential function of float

FLOOR(number) X X Largest integer <= number

LOG(float) X X Base e logarithm of float

LOG10(float) X X Base 10 logarithm of float

MOD(integer1, integer2) X X Remainder for integer1 / integer2

Appendix E: Supported JDBC Scalar Functions

163

JDBC built-in UDF
mode

Description

PI() X X The constant pi

POWER(number, power) X number raised to (integer) power

RADIANS(number) X Radians in number degrees

RAND(integer) X[2] Random floating point for seed integer

ROUND(number, places) X number rounded to places places

SIGN(number) X X -1 to indicate number is < 0; 0 to indicate number is
= 0; 1 to indicate number is > 0

SIN(float) X X Sine of float radians

SQRT(float) X X Square root of float

TAN(float) X X Tangent of float radians

TRUNCATE(number, places) X number truncated to places places

Legend: X — available in this mode.

E.2. String Functions
JDBC built-in UDF

mode
Description

ASCII(string) X X Integer representing the ASCII code value of the
leftmost character in string

CHAR(code) X X Character with ASCII code value code, where
code is between 0 and 255

CHAR_LENGTH(string
[,CHARACTERS])

X[3] Returns the length in characters of the string
expression

CHAR_LENGTH(string, OCTETS) X Returns the length in bytes of the string
expression whose result is the smallest integer
not less than the number of bits divided by 8,
alias for OCTET_LENGTH

CHARACTER_LENGTH(string
[,CHARACTERS])

X[4] Alias for CHAR_LENGTH

CHARACTER_LENGTH(string,
OCTETS)

X Alias for CHAR_LENGTH, OCTET_LENGTH

CONCAT(string1, string2) X X Character string formed by appending string2 to
string1

DIFFERENCE(string1,
string2)

 Integer indicating the difference between the
values returned by the function SOUNDEX for
string1 and string2

Appendix E: Supported JDBC Scalar Functions

164

JDBC built-in UDF
mode

Description

INSERT(string1, start,
length, string2)

X A character string formed by deleting length
characters from string1 beginning at start, and
inserting string2 into string1 at start

LCASE(string) X X Converts all uppercase characters in string to
lowercase

LEFT(string, count) X X The count leftmost characters from string

LENGTH(string
[,CHARACTERS])

X[5] X[6] Number of characters in string, excluding
trailing blanks

LENGTH(string, OCTETS]) X[7] Number of characters in string, excluding
trailing blanks

LOCATE(string1, string2
[,start])

X Position in string2 of the first occurrence of
string1, searching from the beginning of
string2; if start is specified, the search begins
from position start. 0 is returned if string2 does
not contain string1. Position 1 is the first
character in string2

LTRIM(string) X X Characters of string with leading blank spaces
removed

OCTET_LENGTH(string) X Returns the length in bytes of the string
expression whose result is the smallest integer
not less than the number of bits divided by 8

POSITION(substring IN
string [,CHARACTERS])

X Returns the position of first occurrence of substr
in string (with optional CHARACTERS)

POSITION(substring IN
string, OCTETS)

X[8] Returns the position of first occurrence of substr
in string (with caveat)

REPEAT(string, count) X A character string formed by repeating string
count times

REPLACE(string1, string2,
string3)

X Replaces all occurrences of string2 in string1
with string3

RIGHT(string, count) X The count rightmost characters in string

RTRIM(string) X X The characters of string with no trailing blanks

SOUNDEX(string) A character string, which is data source-
dependent, representing the sound of the words
in string; this could be a four-digit SOUNDEX
code, a phonetic representation of each word,
etc

SPACE(count) X A character string consisting of count spaces

SUBSTRING(string, start,
length)

X X A character string formed by extracting length
characters from string beginning at start

Appendix E: Supported JDBC Scalar Functions

165

JDBC built-in UDF
mode

Description

UCASE(string) X X Converts all lowercase characters in string to
uppercase

Legend: X — available in this mode.

E.3. Time and Date Functions
JDBC built-in UDF

mode
Description

CURRENT_DATE[()] X Synonym for CURDATE()

CURRENT_TIME[()] X Synonym for CURTIME()

CURRENT_TIMESTAMP[()] X Synonym for NOW()

CURDATE() X X The current date as a date value

CURTIME() X X The current local time as a time value

DAYNAME(date) X[9] A character string representing the day
component of date; the name for the day is
specific to the data source

DAYOFMONTH(date) X X An integer from 1 to 31 representing the day of
the month in date

DAYOFWEEK(date) X An integer from 1 to 7 representing the day of
the week in date; 1 represents Sunday

DAYOFYEAR(date) X An integer from 1 to 366 representing the day of
the year in date

EXTRACT(field FROM source) X Extract the field portion from the source. The
source is a datetime value. The value for field
may be one of the following: YEAR, MONTH, DAY,
HOUR, MINUTE, SECOND

HOUR(time) X X An integer from 0 to 23 representing the hour
component of time

MINUTE(time) X X An integer from 0 to 59 representing the minute
component of time

MONTH(date) X X An integer from 1 to 12 representing the month
component of date

MONTHNAME(date) X[10] A character string representing the month
component of date; the name for the month is
specific to the data source

NOW() X X A timestamp value representing the current date
and time

Appendix E: Supported JDBC Scalar Functions

166

JDBC built-in UDF
mode

Description

QUARTER(date) X An integer from 1 to 4 representing the quarter
in date; 1 represents January 1 through March
31

SECOND(time) X X An integer from 0 to 59 representing the second
component of time

TIMESTAMPADD(interval,
count, timestamp)

X A timestamp calculated by adding count number
of interval(s) to timestamp

TIMESTAMPDIFF(interval,
timestamp1, timestamp2)

X An integer representing the number of interval
by which timestamp2 is greater than timestamp1

WEEK(date) X X An integer from 1 to 53 representing the week of
the year in date

YEAR(date) X X An integer representing the year component of
date

Legend: X — available in this mode.

E.4. System Functions
JDBC built-in UDF

mode
Description

DATABASE() X[11] Name of the database

IFNULL(expression, value) X X value if expression is null; expression if
expression is not null

USER() X Username in the DBMS

Legend: X — available in this mode.

E.5. Conversion Functions

Appendix E: Supported JDBC Scalar Functions

167

JDBC built-in UDF
mode

Description

CONVERT(value, SQLtype) X X value converted to SQLtype where SQLtype may
be one of the following SQL types:

• BIGINT

• BINARY

• BLOB

• CHAR

• CLOB

• DATE

• DECFLOAT

• DECIMAL

• DOUBLE

• DOUBLE PRECISION

• FLOAT

• INTEGER

• LONGNVARCHAR

• LONGVARBINARY

• LONGVARCHAR

• NCHAR

• NCLOB

• NVARCHAR

• REAL

• SMALLINT

• TIME

• TIME_WITH_TIMEZONE

• TIME_WITH_TIME_ZONE

• TIMESTAMP

• TIMESTAMP_WITH_TIMEZONE

• TIMESTAMP_WITH_TIME_ZONE

• TINYINT

• VARBINARY

• VARCHAR

These type names can also be prefixed with
SQL_.

Appendix E: Supported JDBC Scalar Functions

168

Legend: X — available in this mode.

The CONVERT escape provides some additional features, or deviates from the JDBC defined
behaviour:

• Contrary to the JDBC specification, we allow explicit length or precision and scale parameters

• (SQL_)VARCHAR, (SQL_)NVARCHAR (and value not a parameter (?)) without explicit length is
converted using TRIM(TRAILING FROM value), which means the result is VARCHAR except for blobs
where this will result in a blob; national character set will be lost. If value is a parameter (?),
and no length is specified, then a length of 50 will be applied (cast to (N)VARCHAR(50)).

• (SQL_)CHAR, (SQL_)NCHAR without explicit length will be cast to (N)CHAR(50)

• (SQL_)BINARY, and (SQL_)VARBINARY without explicit length will be cast to (VAR)CHAR(50) CHARACTER
SET OCTETS. With explicit length, CHARACTER SET OCTETS is appended.

• (SQL_)LONGVARCHAR, (SQL_)LONGNVARCHAR, (SQL_)CLOB, (SQL_)NCLOB will be cast to BLOB SUB_TYPE
TEXT, national character set will be lost

• (SQL_)LONGVARBINARY, (SQL_)BLOB will be cast to BLOB SUB_TYPE BINARY

• (SQL_)TINYINT is mapped to SMALLINT

• (SQL_)ROWID is not supported as length of DB_KEY values depend on the context

• (SQL_)DECIMAL and (SQL_)NUMERIC without precision and scale are passed as is, in current
Firebird versions, this means the value will be equivalent to DECIMAL(9,0) (which is equivalent
to INTEGER)

• Unsupported/unknown SQLtype values (or invalid length or precision and scale) are passed as is
to cast, resulting in an error from the Firebird engine if the resulting cast is invalid

[1] On Windows platform it is represented by the ib_udf.dll, on Linux it is represented by the libib_udf.so.

[2] Maps to UDF RAND() taking no parameters. The random number generator is seeded by the current time. There is no function
where the seed can be specified.

[3] Second parameter is ignored in Jaybird 3 and earlier, supported in Jaybird 4 and higher

[4] Second parameter ignored in Jaybird 3 and earlier, supported in Jaybird 4 and higher

[5] In Jaybird 3, the second parameter is ignored, in Jaybird 4 the CHARACTERS parameter only determines that characters are
counted, the ignored blanks (space (0x20) or NUL (0x00)) are not determined by the parameter but by the underlying type

[6] The trailing blanks are also counted, only works if second parameter is omitted

[7] The OCTETS parameter only determines that bytes are counted, the ignored blanks (space (0x20) or NUL (0x00)) are not
determined by the parameter but by the underlying type

[8] Parameter OCTETS is ignored

[9] Always returns English full names (e.g. Sunday)

[10] Always returns English full names (e.g. “January”)

[11] Either the full path of the database or the alias. See documentation of RDB$GET_CONTEXT('SYSTEM', 'DB_NAME') for details.

Appendix E: Supported JDBC Scalar Functions

169

Appendix E: Supported JDBC Scalar Functions

170

Appendix F: Jaybird versions
This appendix lists the distribution files and supported specifications of recent Jaybird versions.

F.1. Jaybird 5

F.1.1. Java support

Jaybird 5 supports Java 8 (JDBC 4.2), and Java 9 and higher (JDBC 4.3).

Given the limited support period for Java 9 and higher versions, we limit support to Java 8, 11, 17
and the most recent LTS version after Java 17 and the latest Java release. Currently, that means we
support Java 8, 11, 17, and 21.



Jaybird 5 will be the last version to support Java 8 and 11. Jaybird 6 will use Java 17
as the baseline (minimum) version. We highly recommend upgrading to Java 17 or
higher.

Jaybird 5 will serve as a “long-term support” version for Java 8 and 11, with
maintenance releases at least until the release of Jaybird 7.

Jaybird 5 provides libraries for Java 8 and Java 11. The Java 8 builds have all JDBC 4.3 related
functionality and can be used on Java 9 and higher as well, but the Java 11 version has additional
features, like the ChaCha wire encryption.

Jaybird 5 is not modularized, but all versions declare the automatic module name
org.firebirdsql.jaybird.

F.1.2. Firebird support

Jaybird 5 supports Firebird 2.5 and higher.

Formal support for Firebird 2.0 and 2.1 has been dropped, and some things may no longer work
(especially DatabaseMetaData methods), if features of Firebird 2.5 have been used. The Type 2 and
embedded server JDBC drivers use JNA to access the Firebird client or embedded library.

Notes on Firebird 3.0 support

Jaybird 5 supports the Firebird 3.0 and higher zlib compression.

Notes on Firebird 4.0 support

Jaybird 5 supports the protocol improvements of Firebird 4.0 for statement timeouts and server-
side batch execution. Jaybird 5 does not support sending blobs as part of batch execution.

Jaybird 5 only supports the ChaCha wire encryption plugin using the Java 11 version of the driver.
Jaybird 5 does not support the ChaCha64 wire encryption plugin. Support for ChaCha64 will be
added in Jaybird 6.

Appendix F: Jaybird versions

171

See also Notes on Firebird 3.0 support

Notes on Firebird 5.0 support

Jaybird 5 supports Firebird 5.0 server-side scrollable cursors and multi-row RETURNING.

See also Notes on Firebird 4.0 support

F.1.3. Supported Specifications

Jaybird 5 supports the following specifications:

Specification Details

JDBC 4.3 Jaybird supports most of JDBC 4.3, in as far the features are required or
supported by Firebird. It is not officially JDBC compliant, because we
currently don’t have access to the TCK.

JTA The driver provides an implementation of the
javax.transaction.xa.XAResource interface via a javax.sql.XADataSource
implementation.

F.1.4. Distribution

Jaybird has no required runtime dependencies. For native or embedded connections, JNA 5.12.1
needs to be on the class path.

Distribution package

The latest version of Jaybird can be downloaded from https://firebirdsql.org/en/jdbc-driver/

The following files can be found in the distribution package:

File name Description

jaybird-5.0.4.<java>.jar An archive containing the JDBC driver, the Services API and event
management classes. Where <java> is either java11 or java8.

lib/jna-5.12.1.jar Optional dependency, required if you want to use Type 2 native, or
embedded protocols

Maven

Alternatively, you can use maven to automatically download Jaybird and its dependencies.

Jaybird 5 is available from Maven central:

groupId org.firebirdsql.jdbc

artifactId jaybird

version 5.0.4.<java> (where <java> is either java11 or java8)

Appendix F: Jaybird versions

172

https://firebirdsql.org/en/jdbc-driver/

For example:

<dependency>
 <groupId>org.firebirdsql.jdbc</groupId>
 <artifactId>jaybird</artifactId>
 <version>5.0.4.java11</version>
</dependency>

If you want to use Type 2 support (native or embedded), you need to explicitly include JNA as a
dependency:

<dependency>
 <groupId>net.java.dev.jna</groupId>
 <artifactId>jna</artifactId>
 <version>5.12.1</version>
</dependency>

For native connections you can use the org.firebirdsql.jdbc:fbclient dependency to provide the
client library. See Maven dependency for native client for details.

F.2. Jaybird 4


Jaybird 4 is end-of-life and will not receive further updates. We recommend
upgrading to Jaybird 5.

F.2.1. Java support

Jaybird 4 supports Java 7 (JDBC 4.1), Java 8 (JDBC 4.2), and Java 9 and higher (JDBC 4.3).

Given the limited support period for Java 9 and higher versions, we will limit support on those
versions to the recent LTS versions and the latest release. Currently, that means we support Java 7,
8, 11, 17, and 21[1].

Jaybird 4 provides libraries for Java 7, Java 8, and Java 11. The Java 8 builds have the same source
and all JDBC 4.3 related functionality and can be used on Java 9 and higher as well.

Jaybird 4 is not modularized, but all versions declare the automatic module name
org.firebirdsql.jaybird.

F.2.2. Firebird support

Jaybird 4 supports Firebird 2.5 and higher.

Formal support for Firebird 2.0 and 2.1 has been dropped (although in general we expect the driver
to work). The Type 2 and embedded server JDBC drivers use JNA to access the Firebird client or
embedded library.

Appendix F: Jaybird versions

173

Notes on Firebird 3 support

Jaybird 4 supports the Firebird 3.0 and higher zlib compression.

Notes on Firebird 4 support

Jaybird 4 supports the protocol improvements of Firebird 4.0 for statement timeouts, but does not
implement the new batch protocol.

Jaybird 4 provides time zone support.

Jaybird 4 supports the extended numeric precision types NUMERIC or DECIMAL with a precision higher
than 18 up to 38. Since Jaybird 4.0.1, the INT128 type is also supported.

Jaybird 4 does not support the ChaCha wire encryption plugin. Support for ChaCha has been added
in Jaybird 5.

F.2.3. Supported Specifications

Jaybird supports the following specifications:

Specification Details

JDBC 4.3 Jaybird supports most of JDBC 4.3, in as far the features are required or
supported by Firebird. It is not officially JDBC compliant, because we
currently don’t have access to the TCK.

JCA 1.5 Jaybird provides an implementation of
javax.resource.spi.ManagedConnectionFactory and related interfaces. CCI
interfaces are not supported.

JTA The driver provides an implementation of the
javax.transaction.xa.XAResource interface via the JCA framework and a
javax.sql.XADataSource implementation.

F.2.4. Distribution

The Jaybird driver has compile-time and run-time dependencies to JCA 1.5.

Distribution package

The latest version of Jaybird can be downloaded from https://firebirdsql.org/en/jdbc-driver/

The following files can be found in the distribution package:

File name Description

jaybird-4.0.10.<java>.jar An archive containing the JDBC driver, the JCA connection manager,
the Services API and event management classes. Where <java> is
either java7, java8 or java11.

jaybird-full-
4.0.10.<java>.jar

Same as above, but including the JCA 1.5 dependency. Where <java> is
either java7, java8 or java11.

Appendix F: Jaybird versions

174

https://firebirdsql.org/en/jdbc-driver/

File name Description

lib/connector-api-1.5.jar Required dependency; part of jaybird-full, not necessary when
deploying to a Java EE or Jakarta EE 8 or lower application server

lib/jna-5.5.0.jar Optional dependency, required if you want to use Type 2 native, local
or embedded protocols

Maven

Alternatively, you can use maven to automatically download Jaybird and its dependencies.

Jaybird 4 is available from Maven central:

groupId org.firebirdsql.jdbc

artifactId jaybird

version 4.0.10.<java> (where <java> is either java11, java8 or java7)

For example:

<dependency>
 <groupId>org.firebirdsql.jdbc</groupId>
 <artifactId>jaybird</artifactId>
 <version>4.0.10.java11</version>
</dependency>

If your application is deployed to a Java EE or Jakarta EE 8 or lower application server, you will
need to exclude the javax.resource:connector-api dependency, and add it as a provided
dependency:

<dependency>
 <groupId>org.firebirdsql.jdbc</groupId>
 <artifactId>jaybird</artifactId>
 <version>4.0.10.java11</version>
 <exclusions>
 <exclusion>
 <groupId>javax.resource</groupId>
 <artifactId>connector-api</artifactId>
 </exclusion>
 </exclusions>
</dependency>
<dependency>
 <groupId>javax.resource</groupId>
 <artifactId>connector-api</artifactId>
 <version>1.5</version>
 <scope>provided</scope>
</dependency>

Appendix F: Jaybird versions

175

If you want to use Type 2 support (native, local or embedded), you need to explicitly include JNA as
a dependency:

<dependency>
 <groupId>net.java.dev.jna</groupId>
 <artifactId>jna</artifactId>
 <version>5.5.0</version>
</dependency>

For native and local you can use the org.firebirdsql.jdbc:fbclient dependency to provide the
client library. See Maven dependency for native client for details.

F.3. Jaybird 3


Jaybird 3 is end-of-life and will not receive further updates. We recommend
upgrading to Jaybird 5.

F.3.1. Java support

Jaybird 3 supports Java 7 (JDBC 4.1), Java 8 (JDBC 4.2), and Java 9 - 11 (JDBC 4.3).

There are no Java 9+ specific builds, the Java 8 builds have the same source and all JDBC 4.3 related
functionality.

Given the limited support period for Java 9 and higher versions, we may limit support on those
versions to the most recent LTS version and the latest release.

Jaybird 3.0 is not modularized, but since Jaybird 3.0.3, it declares the automatic module name
org.firebirdsql.jaybird.

F.3.2. Firebird support

Jaybird 3 supports Firebird 2.0 and higher, but is only tested with Firebird 2.5, 3.0 and 4.0.

Formal support for Firebird 1.x has been dropped (although in general we expect the driver to
work). The Type 2 and embedded server JDBC drivers use JNA to access the Firebird client or
embedded library.

Notes on Firebird 3 support

Jaybird 3.0.4 added support for wire protocol encryption and database encryption.

Jaybird 3 does not support the Firebird 3.0 zlib compression.

Notes on Firebird 4 support

Jaybird 3 can connect and query Firebird 4.0. Longer object names are supported.

The new data types introduced in Firebird 4.0 are not supported. Support for data types like

Appendix F: Jaybird versions

176

DECFLOAT and NUMERIC/DECIMAL with precision higher than 18 will be introduced in Jaybird 4.

The Srp256 authentication plugin is supported, but the other SrpNNN plugins are not.

Jaybird 3 does not support the Firebird 4.0 zlib compression.

F.3.3. Supported Specifications

Jaybird supports the following specifications:

Specification Details

JDBC 4.3 Jaybird supports most of JDBC 4.3, inasfar the features are required or
supported by Firebird. It is not officially JDBC compliant, because we
currently don’t have access to the TCK.

JCA 1.5 Jaybird provides an implementation of
javax.resource.spi.ManagedConnectionFactory and related interfaces. CCI
interfaces are not supported.

JTA The driver provides an implementation of the
javax.transaction.xa.XAResource interface via the JCA framework and a
javax.sql.XADataSource implementation.

F.3.4. Distribution

The Jaybird driver has compile-time and run-time dependencies to JCA 1.5. Additionally, if the antlr-
runtime classes are found in the class path, it is possible to use generated key retrieval.

Distribution package

The latest version of Jaybird can be downloaded from https://firebirdsql.org/en/jdbc-driver/

The following files can be found in the distribution package:

File name Description

jaybird-3.0.12.jar An archive containing the JDBC driver, the JCA connection manager,
the Services API and event management classes.

jaybird-full-3.0.12.jar Same as above, but including the JCA 1.5 dependency.

lib/antlr-runtime-4.7.jar Optional dependency, required if you want to use getGeneratedKeys
support

lib/connector-api-1.5.jar Required dependency; part of jaybird-full, not necessary when
deploying to a Java EE or Jakarta EE 8 or lower application server

lib/jna-4.4.0.jar Optional dependency, required if you want to use Type 2 native, local
or embedded protocols

Maven

Alternatively, you can use maven to automatically download Jaybird and its dependencies.

Appendix F: Jaybird versions

177

https://firebirdsql.org/en/jdbc-driver/

Jaybird 3 is available from Maven central:

groupId org.firebirdsql.jdbc

artifactId jaybird-jdkXX (where XX is 17 (Java 7) or 18 (Java 8))

version 3.0.12

For example:

<dependency>
 <groupId>org.firebirdsql.jdbc</groupId>
 <artifactId>jaybird-jdk18</artifactId>
 <version>3.0.12</version>
</dependency>

The Maven definition of Jaybird depends on antlr-runtime by default.

If your application is deployed to a Java EE or Jakarta EE 8 or lower application server, you will
need to exclude the javax.resource:connector-api dependency, and add it as a provided
dependency:

<dependency>
 <groupId>org.firebirdsql.jdbc</groupId>
 <artifactId>jaybird-jdk18</artifactId>
 <version>3.0.12</version>
 <exclusions>
 <exclusion>
 <groupId>javax.resource</groupId>
 <artifactId>connector-api</artifactId>
 </exclusion>
 </exclusions>
</dependency>
<dependency>
 <groupId>javax.resource</groupId>
 <artifactId>connector-api</artifactId>
 <version>1.5</version>
 <scope>provided</scope>
</dependency>

If you want to use Type 2 support (native, local or embedded), you need to explicitly include JNA as
a dependency:

<dependency>
 <groupId>net.java.dev.jna</groupId>
 <artifactId>jna</artifactId>
 <version>4.4.0</version>
</dependency>

Appendix F: Jaybird versions

178

For native and local you can use the org.firebirdsql.jdbc:fbclient dependency to provide the
client library. See Maven dependency for native client for details.

F.4. Jaybird 2.2


Jaybird 2.2 is end-of-life and will not receive further updates. We recommend
upgrading to Jaybird 5.

F.4.1. Java support

Jaybird 2.2 supports Java 6 (JDBC 4.0), Java 7 (JDBC 4.1) and Java 8 (JDBC 4.2). Java 5 support was
dropped in Jaybird 2.2.8.

For compatibility with Java 9 modules, version 2.2.14 introduced the automatic module name
org.firebirdsql.jaybird. This guarantees a stable module name for Jaybird, and allows for future
modularization of Jaybird.

F.4.2. Firebird support

Jaybird 2.2 supports Firebird 1.0 and higher, but is only tested with Firebird 2.5 and 3.0.

Connecting to Firebird 3.0 requires some additional configuration, see Jaybird and Firebird 3.0
[https://github.com/FirebirdSQL/jaybird/wiki/Jaybird-and-Firebird-3] for details.

Firebird 4.0 is not formally supported in Jaybird 2.2.x, although connecting and most functionality
will work. We suggest that you use Jaybird 3.x or higher for Firebird 4.0. Support for newer data
types like DECFLOAT and NUMERIC/DECIMAL with precision higher than 18 will be introduced in Jaybird
4.

The Type 2 and embedded server JDBC drivers require the appropriate JNI library. Precompiled JNI
binaries for Windows and Linux platforms are shipped in the default installation, other platforms
require porting/building the JNI library for that platform.

F.4.3. Supported Specifications

Jaybird 2.2 supports the following specifications:

Specification Details

JDBC 4.2 Driver does not fully support JDBC 4.2 features, but implements large
update count methods by calling the normal update count methods, and
methods with SQLType by calling methods accepting the java.sql.Types
integer value. Supports new java.time classes with some caveats.

JDBC 4.1 Driver implements all JDBC 4.1 methods added to existing interfaces. The
driver explicitly supports closeOnCompletion, most other methods
introduced with JDBC 4.1 throw SQLFeatureNotSupportedException.

JDBC 4.0 Driver implements all JDBC 4.0 interfaces and supports exception
chaining.

Appendix F: Jaybird versions

179

https://github.com/FirebirdSQL/jaybird/wiki/Jaybird-and-Firebird-3

Specification Details

JCA 1.0 Jaybird provides an implementation of
javax.resource.spi.ManagedConnectionFactory and related interfaces. CCI
interfaces are not supported. Although Jaybird 2.2 depends on the JCA 1.5
classes, JCA 1.5 compatibility is currently not guaranteed.

JTA The driver provides an implementation of the
javax.transaction.xa.XAResource interface via the JCA framework and a
javax.sql.XADataSource implementation.

F.4.4. Distribution

The Jaybird driver has compile-time and run-time dependencies to JCA 1.5. Additionally, if the antlr-
runtime classes are found in the class path, it is possible to use generated key retrieval.

Distribution package

The latest version of Jaybird can be downloaded from https://firebirdsql.org/en/jdbc-driver/

The following files can be found in the distribution package:

File name Description

jaybird-2.2.15.jar An archive containing the JDBC driver, the JCA connection manager,
the Services API and event management classes.

jaybird-full-2.2.15.jar Same as above, but including the JCA 1.5 dependency.

lib/antlr-runtime-3.4.jar Optional dependency, required if you want to use getGeneratedKeys
support

lib/connector-api-1.5.jar Required dependency; part of jaybird-full, not necessary when
deploying to a Java EE or Jakarta EE 8 or lower application server

lib/log4j-core.jar Optional dependency, core Log4J classes that provide logging.

Jaybird 2.2 has compile-time and run-time dependencies on the JCA 1.5 classes. Additionally, if
Log4J classes are found in the class path, it is possible to enable extensive logging inside the driver.
If the ANTLR runtime classes are absent, the generated keys functionality will not be available.

Native dependencies (required only for Type 2 and Embedded):

• jaybird22.dll — Windows 32-bit

• jaybird22_x64.dll — Windows 64-bit

• libjaybird22.so — Linux 32-bit (x86)

• libjaybird22_x64.so — Linux 64-bit (AMD/Intel 64)

The Windows DLLs have been built with Microsoft Visual Studio 2010 SP1. To use the native or
embedded driver, you will need to install the Microsoft Visual C++ 2010 SP 1 redistributable.

Appendix F: Jaybird versions

180

https://firebirdsql.org/en/jdbc-driver/

Maven

Alternatively, you can use maven to automatically download Jaybird and its dependencies.

Jaybird 2.2 is available from Maven central:

Groupid: org.firebirdsql.jdbc,
Artifactid: jaybird-jdkXX (where XX is 16, 17 or 18).
Version: 2.2.15

For example:

<dependency>
 <groupId>org.firebirdsql.jdbc</groupId>
 <artifactId>jaybird-jdk18</artifactId>
 <version>2.2.15</version>
</dependency>

The Maven definition of Jaybird depends on antlr-runtime by default.

If your application is deployed to a Java EE or Jakarta EE 8 or lower application server, you will
need to exclude the javax.resource:connector-api dependency, and add it as a provided
dependency:

<dependency>
 <groupId>org.firebirdsql.jdbc</groupId>
 <artifactId>jaybird-jdk18</artifactId>
 <version>2.2.15</version>
 <exclusions>
 <exclusion>
 <groupId>javax.resource</groupId>
 <artifactId>connector-api</artifactId>
 </exclusion>
 </exclusions>
</dependency>
<dependency>
 <groupId>javax.resource</groupId>
 <artifactId>connector-api</artifactId>
 <version>1.5</version>
 <scope>provided</scope>
</dependency>

F.5. Pre-release versions

F.5.1. Jaybird 6

Jaybird 6 is currently in development. The following information is tentative and may change
before general availability.

Appendix F: Jaybird versions

181

Snapshot versions are intended for evaluation and testing purposes only. We do not recommend
their use in production environments.

Java support

Jaybird 6 supports Java 17 and higher (JDBC 4.3).

Given the limited support period for non-LTS Java versions, we limit support to Java 17 and the
most recent LTS version after Java 17 and the latest Java release. Currently, that means we support
Java 17, and 21.

Jaybird 6 provides libraries for Java 17.

Jaybird 6 is modularized, and provides the following modules:

org.firebirdsql.jaybird

main Jaybird driver (artifact org.firebirdsql.jdbc:jaybird)

org.firebirdsql.jaybird.chacha64

ChaCha64 wire encryption implementation (artifact org.firebirdsql.jdbc:chacha64-plugin)

org.firebirdsql.jna

native and embedded protocol implementation using JNA (artifact
org.firebirdsql.jdbc:jaybird-native)

Firebird support

Jaybird 6 supports Firebird 3.0 and higher.

Jaybird 6 will — by default — not connect to Firebird 2.5 or older. To connect to earlier versions,
unsupported protocols have to be enabled explicitly, see Enabling unsupported protocol versions
for details.

Formal support for Firebird 2.5 has been dropped, and some things may no longer work (especially
DatabaseMetaData methods), if features of Firebird 3.0 have been used. The Type 2 and embedded
server JDBC drivers require a separate artifact, jaybird-native, and JNA to access the Firebird client
or embedded library.

Notes on Firebird 3.0 support

Jaybird 6 supports the Firebird 3.0 and higher zlib compression.

Jaybird 6 supports the Arc4 wire encryption plugin out-of-the-box.

Notes on Firebird 4.0 support

Jaybird 6 supports the protocol improvements of Firebird 4.0 for statement timeouts and server-
side batch execution. Jaybird 6 does not support sending blobs as part of batch execution.

Jaybird 6 supports the Arc4 and ChaCha wire encryption plugin out-of-the-box. To support the
ChaCha64 wire encryption plugin, the artifact org.firebirdsql.jdbc:chacha64-plugin has to be

Appendix F: Jaybird versions

182

added to the classpath.

See also Notes on Firebird 3.0 support

Notes on Firebird 5.0 support

Jaybird 6 supports Firebird 5.0 server-side scrollable cursors and multi-row RETURNING.

See also Notes on Firebird 4.0 support

Supported Specifications

Jaybird 6 supports the following specifications:

Specification Details

JDBC 4.3 Jaybird supports most of JDBC 4.3, in as far the features are required or
supported by Firebird. It is not officially JDBC compliant, because we
currently don’t have access to the TCK.

JTA The driver provides an implementation of the
javax.transaction.xa.XAResource interface via a javax.sql.XADataSource
implementation.

Distribution

Jaybird has no required runtime dependencies.

For native or embedded connections, the jaybird-native artifact and JNA 5.13.0 need to be on the
classpath.

For ChaCha64 wire encryption, the chacha64-plugin artifact and bcprov-jdk18on (Bouncy Castle JCE
provider) need to be on the classpath.

Maven

Alternatively, you can use Maven to automatically download Jaybird and its dependencies.

Snapshot versions of Jaybird 6 are available for testing from https://oss.sonatype.org/content/
repositories/snapshots/. You will need to add this as a snapshot repository to your Maven
configuration.


These snapshots are released irregularly by a manual deploy. Contact us on
firebird-java [https://groups.google.com/g/firebird-java] if you need a newer snapshot
than available.

groupId org.firebirdsql.jdbc

artifactId jaybird

version 6.0.0-SNAPSHOT

For example:

Appendix F: Jaybird versions

183

https://oss.sonatype.org/content/repositories/snapshots/
https://oss.sonatype.org/content/repositories/snapshots/
https://groups.google.com/g/firebird-java

<dependency>
 <groupId>org.firebirdsql.jdbc</groupId>
 <artifactId>jaybird</artifactId>
 <version>6.0.0-SNAPSHOT</version>
</dependency>

If you want to use ChaCha64 wire encryption, you need to explicitly include chacha64-plugin as a
dependency:

<dependency>
 <groupId>org.firebirdsql.jdbc</groupId>
 <artifactId>chacha64-plugin</artifactId>
 <version>6.0.0-SNAPSHOT</version>
</dependency>

If you want to use Type 2 support (native or embedded), you need to explicitly include jaybird-
native as a dependency:

<dependency>
 <groupId>org.firebirdsql.jdbc</groupId>
 <artifactId>jaybird-native</artifactId>
 <version>6.0.0-SNAPSHOT</version>
</dependency>

In addition, for native connections you can use the org.firebirdsql.jdbc:fbclient dependency to
provide the client library (fbclient.dll/libfbclient.so) on Windows and Linux. See Maven
dependency for native client for details.

[1] The Jaybird 4 support for Java 21 comes with one caveat: some tests weren’t run due to lack of support for Java 21 in test
libraries used for testing Jaybird, and we did not want to invest time to upgrade or replace those libraries.

Appendix F: Jaybird versions

184

Appendix G: License
The contents of this Documentation are subject to the Public Documentation License Version 1.0
(the "License"); you may only use this Documentation if you comply with the terms of this License.
A copy of the License is available at https://www.firebirdsql.org/en/public-documentation-license/.

The Original Documentation is Jaybird 2.1 JDBC driver Java Programmer’s Manual.

The Initial Writer of the Original Documentation is Roman Rokytskyy Copyright © 2004-2008. All
Rights Reserved. (Initial Writer contact(s): roman@rokytskyy.de).

Contributor(s): Mark Rotteveel.

Portions created by Mark Rotteveel are Copyright © 2014-2024. All Rights Reserved. (Contributor
contact(s): mrotteveel@users.sourceforge.net).

Appendix G: License

185

https://www.firebirdsql.org/en/public-documentation-license/
mailto:roman@rokytskyy.de
mailto:mrotteveel@users.sourceforge.net

	Jaybird JDBC Driver Java Programmer’s Manual
	Table of Contents
	Chapter 1. Introduction
	1.1. This manual
	1.2. History
	1.3. Jaybird Architecture
	1.4. Jaybird Distribution
	1.4.1. Maven

	1.5. Quality Assurance
	1.6. Useful resources
	1.6.1. JDBC
	1.6.2. Firebird
	1.6.3. Jaybird Support

	1.7. Contributing
	1.7.1. Reporting Bugs

	User Manual
	Chapter 2. Obtaining a connection
	2.1. Obtaining connection java.sql.DriverManager
	2.1.1. Specifying extended properties
	URL encoding in query part of JDBC URL

	2.1.2. Obtaining a connection via javax.sql.DataSource
	Using JNDI to look up a javax.sql.DataSource

	2.2. Driver types
	2.2.1. PURE_JAVA type
	2.2.2. NATIVE and LOCAL types
	Maven dependency for native client
	Windows
	Linux
	Limitations

	2.2.3. EMBEDDED type
	Limitations

	2.2.4. OOREMOTE type

	2.3. Connection Pooling
	2.3.1. HikariCP example

	2.4. The javax.sql.DataSource implementation
	2.5. The javax.sql.ConnectionPoolDataSource implementation
	2.6. The javax.sql.XADataSource implementation

	Chapter 3. Handling exceptions
	3.1. Working with exceptions
	3.2. Warnings
	3.3. java.sql.SQLException in Jaybird
	3.4. SQL states
	3.5. Useful Firebird error codes
	3.5.1. DDL Errors
	3.5.2. Lock Errors
	3.5.3. Referential Integrity Errors
	3.5.4. DSQL Errors
	3.5.5. Other Errors

	Chapter 4. Executing statements
	4.1. The java.sql.Statement interface
	4.2. Statement behind the scenes
	4.2.1. Statement dynamics
	4.2.2. Statement lifetime and DDL

	4.3. The java.sql.PreparedStatement interface
	4.4. The java.sql.CallableStatement interface
	4.4.1. Firebird stored procedures
	4.4.2. Using the CallableStatement
	4.4.3. Describing Output and Input Parameters

	4.5. Batch Updates
	4.5.1. Batch Updates with java.sql.Statement interface
	4.5.2. Batch Updates with java.sql.PreparedStatement and java.sql.CallableStatement
	4.5.3. Server-side Batch Updates

	4.6. Escape Syntax
	4.6.1. Scalar Functions
	4.6.2. Date and Time Literals
	4.6.3. Outer Joins
	4.6.4. Stored Procedures
	4.6.5. LIKE Escaped Characters

	Chapter 5. Working with result sets
	5.1. ResultSet properties
	5.1.1. ResultSet Types
	5.1.2. ResultSet Concurrency
	5.1.3. ResultSet Holdability

	5.2. ResultSet manipulation
	5.2.1. Accessing the values in the result set
	5.2.2. Updating records in the result set
	5.2.3. Closing the result set

	Chapter 6. Using transactions
	6.1. JDBC transactions
	6.2. Auto-commit mode
	6.3. Read-only Transactions
	6.4. Transaction Isolation Levels
	6.5. Savepoints
	6.6. Transaction Parameter Buffer
	6.6.1. Isolation level
	6.6.2. Read-only transactions
	6.6.3. Lock resolution mode

	6.7. Table Reservation

	Chapter 7. Working with Services
	7.1. ServiceManager
	7.2. Backup and restore
	7.2.1. Gbak backup and restore
	7.2.2. Gbak streaming backup and restore
	7.2.3. Nbackup

	7.3. User management
	7.4. Database maintenance
	7.4.1. Database shutdown and restart
	7.4.2. Shadow configuration
	7.4.3. Database validation and repair
	7.4.4. Limbo transactions
	7.4.5. Sweeping the database
	7.4.6. Other database properties

	7.5. Table statistics of a connection (experimental)
	7.6. Database statistics

	Chapter 8. Working with Events
	8.1. Database events
	8.2. Posting events
	8.3. Subscribing to events
	8.3.1. Asynchronous event notification
	8.3.2. Using blocking methods

	Reference Manual
	Chapter 9. Connection reference
	9.1. Authentication plugins
	9.1.1. Default authentication plugins
	Jaybird 5
	Jaybird 4
	Jaybird 3

	9.1.2. Configure authentication plugins
	9.1.3. External authentication plugin support (experimental)

	9.2. Wire encryption support
	9.3. Wire compression
	9.4. Database encryption support
	9.5. Default holdable result sets
	9.6. Firebird auto commit mode (experimental)
	9.7. Process information
	9.7.1. System properties for process information
	9.7.2. Connection properties for process information

	9.8. Data type bind support
	9.9. Enabling unsupported protocol versions
	9.10. Opt-in feature for package information in DatabaseMetaData
	9.11. Client info properties
	9.11.1. Support in Jaybird 5 and earlier
	9.11.2. Support in Jaybird 6 and later
	JDBC-specified properties

	9.11.3. Connection pools and client info properties

	Chapter 10. Statement reference
	10.1. Generated keys retrieval
	10.1.1. Basic generated keys retrieval
	Example using RETURN_GENERATED_KEYS

	10.1.2. Generated keys by column index
	Example using column indexes

	10.1.3. Generated keys by column name
	Example using column names

	10.1.4. Configuring generated keys support
	Selectively enable statement types

	10.2. Connection property ignoreProcedureType
	10.3. Connection property scrollableCursor
	10.4. Connection property useServerBatch
	10.5. Connection property serverBatchBufferSize

	Chapter 11. General
	11.1. Logging
	11.1.1. Java Platform Logging API
	11.1.2. java.util.logging
	11.1.3. Disable logging
	11.1.4. Console logging
	11.1.5. Custom logging implementation

	Chapter 12. Datatype reference
	12.1. Binary types BINARY/VARBINARY
	12.1.1. Always BINARY/VARBINARY

	12.2. Type BOOLEAN
	12.2.1. Support for BOOLEAN
	12.2.2. Workarounds for booleans

	12.3. Date/time types
	12.3.1. Time zones
	Scope of time zone support
	Support for legacy JDBC date/time types
	No support for other java.time types

	Defining time zone data type bind
	Connection property sessionTimeZone
	Firebird session time zone
	Session time zone for conversion

	Time zone support for CONVERT
	Caveats for time zone types

	12.4. Decimal floating point type DECFLOAT
	12.4.1. Decfloat support in Jaybird 4 and higher
	12.4.2. Workarounds for Jaybird 3
	12.4.3. Defining decfloat data type bind
	12.4.4. DECFLOAT support
	Precision and range
	Configuring decfloat traps and rounding
	Notes

	12.5. Exact numeric types DECIMAL/NUMERIC
	12.5.1. Precision and range

	12.6. Type INT128
	12.6.1. Support for INT128

	Appendices
	Appendix A: Extended connection properties
	A.1. Authentication and security properties
	A.2. Other properties
	A.3. Transaction isolation levels

	Appendix B: System properties
	B.1. Logging
	B.2. Process information
	B.3. Character set defaults
	B.4. Wire protocol buffer sizes
	B.5. Other properties
	B.6. Useful Java system properties

	Appendix C: Data Type Conversion Table
	C.1. Mapping between JDBC, Firebird and Java Types
	C.2. Data Type Conversions

	Appendix D: Character Encodings
	D.1. Encodings Types
	D.2. Encodings in Java
	D.2.1. The UTF8 character set
	D.2.2. The NONE character set

	D.3. Available Encodings

	Appendix E: Supported JDBC Scalar Functions
	E.1. Numeric Functions
	E.2. String Functions
	E.3. Time and Date Functions
	E.4. System Functions
	E.5. Conversion Functions

	Appendix F: Jaybird versions
	F.1. Jaybird 5
	F.1.1. Java support
	F.1.2. Firebird support
	Notes on Firebird 3.0 support
	Notes on Firebird 4.0 support
	Notes on Firebird 5.0 support

	F.1.3. Supported Specifications
	F.1.4. Distribution
	Distribution package
	Maven

	F.2. Jaybird 4
	F.2.1. Java support
	F.2.2. Firebird support
	Notes on Firebird 3 support
	Notes on Firebird 4 support

	F.2.3. Supported Specifications
	F.2.4. Distribution
	Distribution package
	Maven

	F.3. Jaybird 3
	F.3.1. Java support
	F.3.2. Firebird support
	Notes on Firebird 3 support
	Notes on Firebird 4 support

	F.3.3. Supported Specifications
	F.3.4. Distribution
	Distribution package
	Maven

	F.4. Jaybird 2.2
	F.4.1. Java support
	F.4.2. Firebird support
	F.4.3. Supported Specifications
	F.4.4. Distribution
	Distribution package
	Maven

	F.5. Pre-release versions
	F.5.1. Jaybird 6
	Java support
	Firebird support
	Notes on Firebird 3.0 support
	Notes on Firebird 4.0 support
	Notes on Firebird 5.0 support

	Supported Specifications
	Distribution
	Maven

	Appendix G: License

